

Agile Project Management: Managing for

Success

James A. Crowder • Shelli Friess

 Agile Project Management:
Managing for Success

James A.

Crowder

Raytheon

Denver , CO , USA

Shelli Friess

Englewood , CO ,

USA
 ISBN 978-3-319-09017-7 ISBN 978-3-319-09018-4 (eBook)
 DOI 10.1007/978-3-319-09018-4
 Springer Cham Heidelberg New York Dordrecht London

 Library of Congress Control Number: 2014945570

 © Springer International Publishing Switzerland 2015
T his work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of

the material is concerned, specifi cally the rights of translation, reprinting, reuse of illustrations,

recitation, broadcasting, reproduction on microfi lms or in any other physical way, and transmission or

information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar

methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts

in connection with reviews or scholarly analysis or material supplied specifi cally for the purpose of

being entered and executed on a computer system, for exclusive use by the purchaser of the work.

Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright

Law of the Publisher’s location, in its current version, and permission for use must always be obtained

from Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance

Center. Violations are liable to prosecution under the respective Copyright Law.
T he use of general descriptive names, registered names, trademarks, service marks, etc. in this

publication does not imply, even in the absence of a specifi c statement, that such names are exempt from

the relevant protective laws and regulations and therefore free for general use.
 While the advice and information in this book are believed to be true and accurate at the date of

publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for

any errors or omissions that may be made. The publisher makes no warranty, express or implied, with

respect to the material contained herein.

 Printed on acid-free paper

 Springer is part of Springer Science+Business Media (www.springer.com)

Pref ace

 Dr. Crowder has been involved in the research, design, development,

implementation, and installation of engineering systems from several thousand

http://www.springer.com/
http://www.springer.com/

dollars up to a few billion dollars. Both Dr. Crowder and Ms. Friess have

been involved in raving successes and dismal failures (ok, let’s call them

learning opportunities) not only in development efforts but in team building

and team dynamics as well. Having been involved in agile development projects

and team building exercises, both have seen the major pitfalls associated with trying

to build teams and, in particular, create successful agile development teams. A

general lack of management commitment to the agile development process and a

lack of training provided for people working in development teams are two of the

major reasons agile teams so often falter or fail. Here we endeavor to discuss some

of the major topics associated with team dynamics, individual empowerment, and

helping management get comfortable with a new paradigm that is not going away.

H aving taught both classical program management methods and agile

development and management methods for many years, there are always arguments

as to whether the proper term is program management or project management. To

settle the matter and not create issues, in the course of this book, we will use the

term program/project management. It may seem redundant, but it covers both bases.

 There are several case studies throughout the book. These case studies came

from a variety of government, aerospace, and commercial companies/groups, and

no company should be inferred from a given case study, unless the company name

is specifi cally mentioned. In some instances, the case study may represent a

collection of very similar stories from several different companies.

L astly, we want to emphasize that this is not a book on how to perform agile

development, but how to manage the process of agile development and how

managers can facilitate successful and effi cient agile development

programs/project. This book is written to give managers the tools required to be

successful as an agile manager.

Denver, CO James A. Crowder

 Englewood, CO Shelli Friess
v

Contents

1 Introduction: The Agile Manager ... 1

1.1 Agile Development Demands Agile Management 2

1.2 Software and Systems Engineering:

 Where Did They Come From? ... 4

1.2.1 Software Engineering History

.. 4

1.2.2 System Engineering History ..

 4

 1.3 The Need for New Leadership ... 5

1.1.1 Agile Management: Leader, Manager, Facilitator 6

 1.4 Layout of the Book .. 7

2 The Psychology of Agile Team Leadership ... 9

2.1 Individuals over Process and Tools .. 9

2.2 The Agile Manager: Establishing Agile Goals 12

2.3 Independence and Interdependence: Locus of Empowerment 15

2.3.1 Locus of Empowerment ... 15

2.4 Overall, Individual, and Team Goals: Locus of Control 17

2.5 Self-Organization: The Myths and the Realities 19

2.6 Creating a Stable Team Membership: Containing Entropy 20

2.7 Challenging and Questioning Sprints:

Individual Responsibility ... 22

2.8 Mentoring, Learning, and Creativity:

Creating an Environment of Growth .. 23

2.9 Keeping the Vision in Front of the Team:

Ensuring System Integration .. 23

3 Understanding the Agile Team .. 27

3.1 Agile Team Dynamics

.. 30

3.2 Team Member Dynamics ... 34

3.2.1 Differences Between Classical

and Agile Team Dynamics ... 34

3.2.2 Generational Differences in Team Members 35

vii

viii Contents

 3.2.3 Cultural and Diversity Differences ... 38

 3.2.4 Virtual Team Dynamics ... 40

 3.2.5 Diversity and Inclusiveness ... 40

4 Productivity Tools for the Modern Team ... 43

4.1 Productivity Tools for the Agile Manager ... 43

4.1.1 Agile Management Software ...

44

4.2 Productivity Tools for the Agile Developer .. 44

4.3 The Future of Agile Development Productivity Tools 46

5 Measuring Success in an Agile World: Agile EVMS 49

5.1 Brief History of the Earned Value Management System 49

5.2 Assessing Agile Development: Agile EVMS 53

5.2.1 Disconnects Between Classical EVMS

 and Agile Development ... 55

5.2.2 Factors That Can Derail Agile EVMS

57

5.2.3 Agile EVMS Metrics...

58

5.3 Entropy as an Earned Value Metric for Agile Development 60

5.3.1 Entropy Measures

60

5.3.2 Volatility of Teams ..

61

5.3.3 Volatility of Software Defects ...

62

6 Conclusion: Modern Design Methodologies—Information

and Knowledge Management .. 65

References ... 67

Index .. 71

Chapter 1

 Introduction: The Agile Manager

Modern productivity teams demand modern leadership, one that understands

modern development needs, stresses, teams, and other aspects of agile development

team dynamics [22]. The purpose of the book is to introduce managers to the new

productivity environments, including geographically, culturally, and generationally

diverse teams. The Agile development paradigm embodies a set of principles which

at fi rst may seem contrary to classical business practices:

1. Satisfy the customer through early and continuous delivery of software

capabilities and services through short software “sprints,” lasting from 2 weeks

to 2 months, with a preference toward shorter sprints.

2. Embracing the environment of change. The Agile development process

harnesses change to gain a competitive advantage in the software development

marketplace [28].

3. Business development, management, and developers must cooperate and

collaborate throughout the development project.

4. Communication needs to be face-to-face, even if that means teleconferencing

over diverse geographical locations. Face-to-face communication is essential for

effi ciently and effectively conveying necessary information across an agile

development team.

5. The Agile development process is designed to allow a sustainable, constant pace

development throughout the entire development project.

6. The primary measure of success (Earned Value) is working software and

capabilities, NOT Equivalent Software Lines of Code (ESLOC).

7. Agile development does NOT mean a lack of design. A good design

(architecture) enhances agility and allows continuous attention to technical

excellence.

8. Simplicity is essential in agile development. The importance of agile software

development demands the art of maximizing the work NOT done.

9. The best architectures, requirements, and software designs emerge from self-

organizing teams, NOT from management mandated team structures.

© Springer International Publishing Switzerland 2015 1
J.A. Crowder, S. Friess, Agile Project Management: Managing for Success,
DOI 10.1007/978-3-319-09018-4_1

2

Fig. 1.1 What Agile development projects are supposed to teach you

Fig. 1.2 What Agile projects that are managed badly actually teach you

The following illustrates this notion, as well as the results of not following these

concepts in managing agile development teams (Figs. 1.1 and 1.2).

 1.1 Agile Development Demands Agile Management

 Agile software design methods are now commonplace; however, management

skills, in general, have not kept pace with the advances in software development

practices. There is a major push among companies, both government and

commercial, to embrace the concepts of diversity and inclusiveness. Managers need

to

 1.1 Agile Development Demands Agile Management

Communication

Responsibility

Collaboration

Teamwork

Communication

Responsibility

Collaboration

Teamwork

Trust No One

3

be trained in how to manage teams of diverse personnel. Much has been

made of managing different personalities, but managers need to be aware of

soft people skills, how to manage them, use them effectively, and how they affect

people of different backgrounds [29].

I t is commonplace to have to work with teams across geographically, ethnically,

generationally, and culturally diverse backgrounds within the same team, not to

mention a range of skill levels. This book will be helpful in understanding how to

manage an agile development team that includes such dynamics [30]. This book

will take the project/program manager beyond the concepts of transformational

leadership, which provides methodologies to connect to employees’ sense of

identity, to include human psychological concepts such as “Locus of Control,”

which will help the manager understand team members’ view of how to manage

their “world” contributes (enhances or detracts) from their ability to work within

team dynamics.

 Agile design methods have been utilized since the mid-1990s, and yet program/

project managers have been slow to adapt to the changes required for effective agile

development [3 1] . And while there are basic management techniques like Scrum

available for the mechanics of managing agile teams, none of these address the

dynamics agile development, which include:

• How to choose the right agile development team

• How to facilitate, not control, an agile team

• How to trust your team: trust is an important factor in change [18]

 The agile development process demands trust, transparency, accountability,

communication, and knowledge sharing [5 0] . Allowing agile teams to develop

these qualities requires understanding and allowing people to evolve and exercise

aspects of their internal development processes like Locus of Control. Locus of

Control refers to the extent to which individuals believe that they can control events

that affect them. Individuals with high Locus of Control believe that events result

primarily from their own behavior and actions. Those with a high external Locus of

Control believe that powerful others, or chance, primarily determine events that

affect them [62].

T he purpose of the book is not to emphasize any particular Agile Development

Management style (e.g., Scrum), but instead to investigate and present methods for

effective Agile team development and management philosophies. Just because you

use Scrum does not mean you are Agile. Scrum is a one of many methods for

managing Agile Software Development teams, assuming you have an agile

development team. Many management organizations confuse this, with disastrous

results. To overcome this and to provide the Agile Manager with the skills required

to effi ciently manage agile development teams, the book includes discussion agile

management techniques [18], the psychology of agile management (Locus of

Empowerment [53]), as well as new metrics and methodologies for measuring the

effi cacies of Agile Development teams (agile EVMS).

4

1.2 Software and Systems Engineering: Where Did

They Come From?
M any think the discipline of Software Engineering is relatively new, and that before

the invention of “modern” software techniques, the discipline was nothing more

than structured coding. But actually, the fi rst two conferences on Software

Engineering were sponsored by the NATO Science Committee in 1968 and 1969 in

Garmisch, Germany [58 , 74].

 1.2.1 Software Engineering History

 In 1968 and 1969, the NATO Science Committee sponsored two conferences on

software engineering, seen by many as the offi cial start of formal discipline of

Software Engineering. The discipline grew, based on what has been deemed the

“Software Crisis” of the late 1960s, 1970s, and 1980s, in which very many major

software projects ran over budget and over schedule; many even caused loss of life

and property. Part of the issues involved in software engineering efforts throughout

the 1970s and 1980s is that they emphasized productivity, often at the cost of quality

[7 5] . Fred Brooks, in the Mythical Man Month [1 4] , admits that he made a

multimillion dollar mistake by not completing the architecture before beginning

software development, a major problem that has been repeated over and over, even

today. We will discuss the notion of the importance of having a complete

architecture on agile development later in the book. This does not mean that the

architecture can’t change, as it often does throughout the project, but system’s

engineering must keep up with changes so that the development teams clearly

understand the architecture they are developing to during every sprint [19]. We

will discuss this at length in subsequent chapters, as the intent here is just to provide

a brief history.

 1.2.2 System Engineering History

 Systems engineering began its development as a formal discipline much earlier than

software engineering, during the 1940s and 1950s at Bell Laboratories. It was

further refi ned and formalized during the 1960s during the NASA Apollo program.

Given the aggressive schedule of the Apollo program, NASA recognized that a

formal methodology of systems engineering was needed, allowing each subsystem

across the Apollo project to be integrated into a whole system, even though it was

composed of hundreds of diverse, specialized structures, sub-functions, and

components. The discipline of system engineering allows designers to deal with a

system that has multiple objectives, and that a balance must be struck between

5

objectives that differ wildly from system to system. System engineering

seeks to optimize the

 1.3 The Need for New Leadership

overall system functionality, utilizing weighted objectives and trade-offs in order to

achieve overall system compatibility and functionality [19]. During the 1970s and

1980s as engineering systems continued to increase in complexity, it became

increasingly diffi cult to design each new system with a blank page. As system

quality attributes like reliability, maintainability, re-usability, availability, etc.

became more and more important, the concept of Object-Oriented design techniques

was developed. The fi rst Object-Oriented languages began to emerge during the

1970s and 1980s. By the 1990s, the fi rst books on Object-Oriented Analysis and

Design (OOAD) were published and available. Unfortunately there were many

different OOAD methodologies. There was no consistency among methods. At one

point in the 1990s, there were over 50 different OOAD methods. This became

increasingly diffi cult for the Department of Defense (DoD), because contract

proposals from competing contractors utilized entirely different OOAD methods to

design their systems, making comparison between proposals nearly impossible.

Finally, in 1993, the Rational Software Company began the development of a Unifi

ed Modeling Language (UML), based on methodologies by Grady Booch [13],

James Rumbaugh [64], and Ivar Jacobsen [41], coupled with elements of other

methods. Here the Rational Software Company simplifi ed current methods from

several authors into a set of OOAD methods that included Class Diagrams, Use

Case Diagrams, State Diagrams, Activity Diagrams, Data Flow Diagrams, and

many others.

 1.3 The Need for New Leadership

W hile Software and Systems Engineering has matured and evolved over the

decades to accommodate a faster-paced, ever-changing development environment,

program/ project management still tends to cling to rigid management techniques

and principles that critically hamper the agile process [51]. A great example is

described below:

Case Study #1: The Non-Agile Manager

Project Length 12 months

Number of Sprints 8 Sprints

Number of Teams 4 Teams

Average Sprint Duration 6 weeks

Description During the planning for Sprint #4, Team #3 discovered that team #4

had a capability scheduled for Sprint #5 that Team #3 needed for their development

in Sprint #5 to accommodate their sprint #5 development. Team #3 negotiated with

6

team #4 and they found a set of capabilities that team #4 had scheduled for

sprint #4 that were not needed till sprint #6. The capabilities team #3 needed

constituted the same number of story-points, and similar complexities, and therefore

would not overly tax team #4’s sprint work to swap the work between sprint #4 and

#5 to accommodate team #3. Team #4 accomplished all of their development for

sprint #4. During the progress evaluation with the program manager, the manager

was very upset that the planned work had not been accomplished, but it had been

changed, with work moved from Sprint #4 to Sprint #5. Team #4 explained that the

work represented the same number of story-points and similar complexity, therefore

not perturbing the overall cost and schedule of the program. When the manager

pushed back, still upset that the work scheduled had not been accomplished, both

Team #3 and Team #4 explained that this is a classical part of the Agile

Development Process, being fl exible to move capability development around,

based on changing needs and requirements. The manager’s reply was (and hence

the reason for the book), “Then I guess we need a more rigid agile process.”

 1.3.1 Agile Management: Leader, Manager, Facilitator

M any mangers shudder at the thought of agile development projects, feeling like

their authority has been eroded. I have heard more than one project manager declare,

when the agile methodology is explained, ask, “So what am I going to do?” Many

managers are used to being intimately involved in the development process, even

though they may, or may not, actually have been software developers [3 4] . It is

true that project/program managers must learn to adapt and take on different roles

in the world of agile development, becoming facilitators and leaders and not so

much traditional managers. The notion of classical line management, or boss, which

many managers still cling to, is no longer relevant in the paradigm of agile software

development projects. Figure 1.3 illustrates this, albeit a bit dramatically.

For effective management of agile development projects, the manager (we’ll

refer to the manager as the Agile Manager throughout the book) needs to have many

skills [33], including effective communication, a diplomat, and other skills shown

in Fig. 1.4 , and will be explained in detail in Chap. 2.

http://dx.doi.org/10.1007/978-3-319-09018-4_2
http://dx.doi.org/10.1007/978-3-319-09018-4_2
http://dx.doi.org/10.1007/978-3-319-09018-4_2

7

Fig. 1.3 Boss vs. Leader
 1.4 Layout of the Book

 Fig. 1.4 Skills of the Agile
Manager/Leader

The rest of the book is dedicated to an in-depth discussion of the new

management paradigm required to enable, encourage, and fully embrace Agile

Software Development and make them the successes they can be. To accomplish

this, the s tructure of the book is outlined in the next section.

8

 1.4 Layout of the Book

 We have arranged the book to build up to new methods for Agile Software

Program/ Project management.

Chapter 2 —The Psychology of Agile Team Leadership This describes the new

“soft” people skills required for modern managers, and how they add/detract from

modern agile development. How to recognize the skills, how to utilize the skills,

and how to build teams with the right “mix” of personalities and soft people skills

for effective and effi cient development efforts.

Chapter 3 —Understanding the Agile Team Success in the modern development

era needs managers and leaders who truly understand what agile development

means and how agile teams collaborate, cooperate, and function in various

situations, particularly in geographically and culturally diverse environments.

Understanding the variety of personalities and soft people skills, coupled with how

these manifest themselves across gender, ethnic backgrounds, and cultural and

generational diversities, and other considerations, will become essential for modern

development leadership and management. This includes discussion of overall

inclusiveness and diversity within the agile development process. Diversity and

Inclusiveness are important dynamics that companies are embracing. Building

development teams that are not just effective but embrace the concepts of diversity

and inclusiveness are important [35], but most leaders and managers have not been

trained for the dynamics these bring (both good and bad) to teams.

Chapter 4 —Productivity Tools for the Modern Team Providing an agile

development team with tools to be productive goes beyond handing each one of

them a laptop with compilers. Communication and collaboration tools, whether

face-toface or geographically diverse, are crucial in modern teams. Here we discuss

collaboration tools and other tools that will be crucial today and in the future. The

proper use of Information Systems can provide management and leadership with

effective ways of monitoring and managing teams. Here we discuss the new

management information systems environments and tools that are available, will be

available in the future, and need to be utilized within the new agile development

paradigm.

Chapter 5 —Measuring Success in an Agile World: Agile EVMS The Earned

Value Measurement System (EVMS) has become a mainstay in Commercial and

Government groups to measure progress and success of a project. EVMS is effective

(albeit subjective) measure, but does not play well with agile development efforts,

due to its requirement of static schedules and work plans. Here we introduce a new

paradigm for EVMS that will accommodate and be effective in measuring progress

and problems within agile development efforts.

Chapter 6— Conclusion: Modern Design Methodologies One of the things that

need to be understood by leadership and management in the future is that just

http://dx.doi.org/10.1007/978-3-319-09018-4_2
http://dx.doi.org/10.1007/978-3-319-09018-4_3
http://dx.doi.org/10.1007/978-3-319-09018-4_4
http://dx.doi.org/10.1007/978-3-319-09018-4_5
http://dx.doi.org/10.1007/978-3-319-09018-4_5
http://dx.doi.org/10.1007/978-3-319-09018-4_6

9

because you deliver a product on time and on budget doesn’t mean the

project was an overall success. Delivering a product on budget and on

schedule but decimating a development team is not, in the long run, a success for

the company. Managers and Leaders must understand all aspects of development

teams for long-term success.

Chapter 2

 The Psychology of Agile Team Leadership

For modern managers, one has to adopt a new philosophy, or psychology, for

dealing with agile development teams. While process is important to ensure the

team delivers quality software that meets customer requirements, it is important to

understand that the Agile Method is geared around more of an informal approach to

management, while putting more time, effort, and emphasis on fl exibility,

communication, and transparency between team members and between the team

and management. It promotes an environment of less control by managers and more

facilitation by managers. The role of the manager takes on a new psychological role,

one of removing roadblocks, encouraging openness and communication, and

keeping track of the change-driven environment to ensure that the overall product

meets in goals and requirements, while not putting too much control on the ebb and

fl ow of the agile development process. Change is no longer wrong, the lack of

ability to change is now wrong. Here we discuss the new “soft” people skills

required for modern managers, and how they add/detract from modern agile

development. How to recognize the skills, how to utilize the skills, and how to build

teams with the right “mix” of personalities and soft people skills for effective and

effi cient development efforts [7 1] .

 2.1 Individuals over Process and Tools

 Companies have spent decades designing, creating, implementing, and executing

tools required to bid and manage development projects. One major category of tools

is prediction tools like CiteSeer© and COCOMO © (Constructive Cost Model) that

have been used since the late 1900s to provide “objective” cost bids for software

development. A later version of COCOMO, COSYSMO © (Constructive Systems

Engineering Model), attempts to provide objective systems engineering bids also.

All of them are based on the antiquated notion of Software Lines of Code (SLOC).

Productivity metrics are all based on the lines of code written/unit time. They try to

estimate the life-cycle cost of software, including designing, coding, testing,

 © Springer International Publishing Switzerland 2015 9

J.A. Crowder, S. Friess, Agile Project Management: Managing for Success,
DOI 10.1007/978-3-319-09018-4_2

Fig. 2.1 Effi ciencies between traditional and agile development

bug- fi xes, and maintenance of the software. But ultimately it comes down to

Software Lines of Code/Month (SLOC/Month). While many will claim these are

objective tools for helping to determine the staff loading necessary for a software/

systems development project. In each tool there are dozens of parameters which are

input by the operator, each of which has an effect on the outcome of the cost model.

Parameters like effi ciency (average SLOC/Month), familiarity with the software

language used, average experience level, etc., can be manipulated, and usually are,

to arrive at the answer that was determined before the prediction tool was used [4

3] .

 Many other tools are utilized to measure the performance (cost and schedule) of

projects once they are in execution. These measurement tools measure how the

project is progressing against its preestablished cost and schedule profi le,

determined in the planning phase of the program/project. What none of these tools,

cost estimation, performance metrics tools, etc., take into account is the actual agile

team and their dynamics. The makeup of the each agile team and the facilitation of

each team is as important, if not more important, than the initial planning of the

project. If the Agile Manager/Leader is not cognizant of the skills necessary not to

just write code, but to work cohesively as an agile team, then success is as random

as how the teams were chosen (usually by who is available at the time). Grabbing

the available software engineers, throwing them randomly into teams, and sending

them off to do good agile things will usually result in abject failure of the project,

or at least seriously reduced effi ciency. This may sound like an extreme example,

but you would be surprised how many agile development projects are staffed in just

this fashion. Many managers point to the following graph (Fig. 2.1) as the reasons

not to go to the expense of changing all their processes to accommodate agile

development.

While in each category agile development produces a higher effi ciency than

traditional software development methods, the increase is not as dramatic as the

promises made by agile advocates and zealots. Classical managers fi nd this graph

disturbing and feel smugly justifi ed in their classical software

development/execution/control methods. This is especially true for large

teams. The data for this graph was taken from

 2.1 Individuals over Process and Tools

Fig. 2.2 Four main components of the agile development process

50 of each size project, both agile and traditional. What are not taken into illustrated

by this graph are the management methods utilized across the traditional vs. agile

programs/projects: the team makeup, how the teams were chosen, or any discussion

of the types of issues that were encountered during the development process. And

while it’s clear that under any team size agile development has increased effi ciency

over traditional methods, and, as expected, smaller team sizes produce better results

with agile methods, understanding the true nature of the agile team process and

applying the psychology of agile management can achieve even greater effi

ciencies.

 Placing the emphasis on the individuals in the agile development teams rather

than on process or tools means understanding people, recognizing their strengths

(not only in terms of programming skills, but also in terms of soft people skills), and

understanding the differences between people of different backgrounds and how the

differences affect team dynamics. This is the fi rst generation where it is possible to

have 60-year-old software engineers in the same agile development teams with

software engineers in their early 20s. The generational differences in perspectives

can severely hamper team dynamics, and therefore team effi ciencies will suffer

greatly if they are not dealt with appropriately and the team members are not

trained in how to function in an agile development team. All members of the

teams need to be able to understand and come to grips with four main components

of agile development, illustrated below in Fig. 2.2 . While there are other

components that are important, without a good handle and agreement on these, agile

development teams are in trouble from the start. These and other issues relating to

team dynamics will be explored in Chap. 3 .

As explained, Fig. 2.2 represents four of the major components of the Agile

Development Process that must be embraced by the agile development team in order

to have a successful and effi cient development process. As important are the skills,

or philosophies, that the manager of the program/project must embrace and practice

in order for the teams to be able to function in an agile environment and have the

best chance for success. Figure 1.4 provided a high-level look at the skills of the

effective agile manager/leader. The descriptions of these skills are:

1. Effective Communicator: The effective communicator fosters and increases

trust, is transparent, considers cultural differences, is able to be fl exible in

delivery of communications, encourages autonomy and role models, exudes

confi dence to solve problems and handle whatever comes up, and has the

courage to admit when they are not sure and willingness to fi nd out. They are

willing to work side by side versus competitive with followers. They have the

ability to communicate clear professional identity and integrity, their values are

clear, and so are their expectations. The effective communicator communicates

congruence with values and goals, as well as being a role model of ethical and

culturally sensitive behavior and values.

2. Diplomat : The diplomat considers the impacts on all stakeholders and how to

follow up with all those affected, even if it is delegated. There is willingness to

consult cultural experts.

3. Effective Listener : The effective listener checks that they understand the

meaning being portrayed, and goes with an idea even if they disagree until the

whole idea is expressed and the originator can think through the complete

thoughts with the leader.

4. Analytical Thinker : The analytical thinker must be able to see the forest and

the trees. The analytical thinking manager/leader must be able to anticipate

outcomes and problems, and explore how they might anticipate handling them,

walking through possible solutions. They must initiate Professional

Development of team members. They think about the how, not just the what-ifs.

 2.2 The Agile Manager: Establishing Agile Goals

 For the effective agile project/program manager, it is crucial early on to establish

goals and objectives that establish the atmosphere for each sprint development team.

Understanding how much independence each developer is allowed, how much

interdependence each team member and each team should expect, and creating an

environment that supports the agile development style will provide your teams with

http://dx.doi.org/10.1007/978-3-319-09018-4_3
http://dx.doi.org/10.1007/978-3-319-09018-4_3
http://dx.doi.org/10.1007/978-3-319-09018-4_3
http://dx.doi.org/10.1007/978-3-319-09018-4_1#Fig1

the best chance for success. Below is a list of agile team characteristics and

constraints that must be defi ned in order for the teams to establish a business

or development

 2.2 The Agile Manager: Establishing Agile Goals

“rhythm” throughout the agile development cycle for the program/project. Each will

be explained in detail in its own section, but general defi nitions are given below:

1. Defi ne and Create Independence : Independence is something many

developers crave. In order for agile development to be successful, there must be

a large degree of independence and need to feel an atmosphere of empowerment,

where the developers are free to create and code the capabilities laid out during

the planning phase of each sprint. This requires a level of trust. Trust that the

developers and the leader all have stakeholders in mind. Trust that the developer

is working toward the end product [23]. Empowerment at the organizational

level provides structure and clear expectations [1 7] . At the individual level it

allows for creativity. Independence means having a voice and yet operating

under company structure of policies and procedures. Independence is also a sense

of knowing that the developer is good and what they do. There is no need to

check in too frequently with the leader, but enough to keep the teamwork

cohesive.

2. Defi ne and Create Interdependence: While independence is a desired and

necessary atmosphere for agile teams, the agile manager must also establish the

boundaries where individual developers, and development teams, must be

interdependent on each other, given that the goal is to create an integrated, whole

system, not just independent parts. Interdependence is being able to rely on team

members [1 6] . The end goal will require a level of commitment from each

person with a common mission in mind. The trust that all individuals on the team

have all stakeholders in mind. This gets the whole team to the common goal and

reduces each member motivated solely for their own end goal.

3. Establish Overall, Individual, and Team Goals and Objectives: setting the

project/program overall goals, team goals, and individual goals and objectives

up front and at the beginning of each sprint helps each team and individual team

member to work success at all levels of the program/project. This can help to

identify strengths of individuals so that the team can use its assets to their highest

production. This also allows room for individual development and growth along

with a place for passions. This also sets up clear expectations, say, of the overall

and team goals. There may be some individual development that is between the

leader and the developer that stays between them. This would also build

individual trust between members of the team and between the leader and the

developers.

4. Establish Self-Organization Concepts: self-organizing teams is one of the

holy grails of agile development teams. However, self-organization is sometimes

a myth, mostly because teams are not trained into how to self-organize. People

do not just inherently self-organize well. If not trained, the stronger personalities

will always run the teams, whether they are the best candidates or not [2 4] . Self-

organization can be nearly impossible when there are very structured people

coupled with not-so-structured people. There may be some work that the

leader can do to promote self-organization. Part of that is opening

communication, building dyads, calling behavior what it is, and being

transparent so that others will follow. It may be helpful for team members to get

to know strengths of other members and how each member can be helpful to

each individual.

5. Establish Feedback and Collaboration Timelines and Objectives : given the

loose structure and nature of agile development, feedback early and often is

crucial to allowing the teams to adapt to changing requirements or development

environments. Also, customer collaboration and feedback at each level in the

development allows the teams to adjust and vector their development efforts,

requirements, etc., to match customer expectations at all points in the

development cycle. Feedback timelines can increase trust and clarify all

expectations. It is nice to know when you need to change a direction, when you

need to change it, instead of later when you had already put so much work into

the project. The more feedback is modeled and practiced, the more natural it

becomes and becomes more automatic. This builds on the independence and

interdependence of the team and individual stakeholders.

6. Establish Stable Sprint Team Membership : choosing the right teams is

important for success in an agile development program/project. Creating teams

that are not volatile (changing members often) is essential to continued success

across multiple sprints. If the teams constantly have to integrate new members,

effi ciency will suffer greatly. New expectations and explanations will take up

much time that could be used for developing. A trusting team can be an effi cient

team. The more often it changes the more work needs to be done to build the

trust. There may be increased commitment from those that work on a cohesive

team with high trust levels and knowledge of one another [18].

7. Establish Team’s Ability to Challenge and Question Sprints : if the teams are

going to be allowed individual and team empowerment, then they must be

allowed to challenge and question sprint capabilities and content across the

development cycle. Forcing solutions on the teams fosters resentment and a lack

of commitment to the program/project. If you’ve built the right team, you should

listen to them. It seems more productive to work on something that makes sense

to you, instead of handed down by others. The ability to challenge and question

will lead to better understanding and more commitment to the end goal.

8. Establish an Environment of Mentoring, Learning, and Creativity :

invariably, teams are composed of a combination of experience levels. This

provides an excellent atmosphere of mentoring and learning, if the agile manager

allows this. This must be built into the sprint schedules, understanding that an

atmosphere of mentoring, learning, and creativity will increase effi ciencies as

the team progresses, not just on this project, but on future projects as well, as the

team members learn from each other. Keep in mind that experienced developers

can learn from junior developer too, as the more junior developer may have

learned techniques and skills that were not previously available to more senior

developers. The learning environment promotes growth. An environment that

fosters learning decreases negative feelings of one’s self, and thus other people.

An environment that fosters learning isn’t run by guilt, or feelings of not

being good enough, or doing something wrong. A learning environment

allows people to grow and the mentor helps the individuals self-determine the

direction they want to develop. The learning environment will foster older

members learning from younger members as well. People will want to learn more

and more and

 2.3 Independence and Interdependence: Locus of Empowerment

reduce competitiveness that can destroy a team. The competitiveness can come

out as a good product not team dynamics. Transparency can help individuals feel

more comfortable with learning. This can show that is ok to have areas of

development and that everyone has room to grow.

9. Keep Mission Vision always out in Front of Teams : many believe that an

established architecture is not required for agile development. This is absolutely

wrong; a solid architecture is even more important during agile development, so

each team and team member understands the end goals for the system. However,

in order for the architecture and software to stay in sync, the systems engineering

must also be agile enough to change as the system is redesigned (or adapted)

over time [19]. Agility is not free from structure but the ability to move about

within the structure.

2.3 Independence and Interdependence: Locus

of Empowerment

 Locus of Empowerment has been conceptualized as a function of informed choice

and self-determination and has been linked to the concepts of self-effi cacy and

locus of control as it applies to agile team membership [6]. Self-understanding and

empowerment, in relation to development opportunities and factual

strength/weakness assessment, represents an important underlying component of

feelings of self- empowerment within an agile development team [74]. Locus of

empowerment and its counterpart, Locus of Control, help to establish both

independence and interdependence for agile team members. Determining those

things each team member is “empowered” to make decision on and work

independently provides each person with a sense of autonomy, allowing them to

work at their peak effi ciency without interference or too much oversight control

over their work. Establishing the Interdependence, or those things which are outside

of the control of the team member, defi nes communication lines and those things

which are necessary to collaborate on, or get inputs from other team members to

facilitate integration and validation of “system-wide” capabilities [7]. What

follows is a discussion of Locus of Empowerment. Locus of Control will be

discussed in Sect. 2.4 .

 2.3.1 Locus of Empowerment

T he notion of Locus of Empowerment is an interactive process that involves an

individual team member’s interaction with the team and the manager [7 0] ,

allowing each team member to develop a sense of acceptance into the team, develop

a sense of where they belong in the team, self-assessment of skills, and

determination of their self-effi cacy—their ability to function and participate both

on an individual level and as part of an agile development team [4 9] . These allow

each

Fig. 2.3 The agile development process with empowerment

individual team member to participate with others, based on their understanding of

their independence and interdependence from and to the team, allowing them to

deal with the daily, weekly, monthly, etc., rhythms of the agile development cycles

throughout the program/project [53].

T he process of team and team member empowerment is a continual and active

process; the form and effi cacy of the empowerment process is determined by past,

current, and ongoing circumstances and events [6 9] . In essence, the empowerment

process is an ebb and fl ow of independence and interdependence relationships that

change throughout the agile development process, including each daily Scrum, each

Sprint planning session, and each Lessons Learned session, throughout the

entire agile development cycle of the program/project. Figure 2.3 illustrates

this process.

In Fig. 2.3, empowerment becomes an integral part of the overall agile

development process, with evaluation of the team members’ abilities, roles,

independence, and interdependence, based on the capabilities needed to be

developed within a given Sprint, the honest evaluation of skills and abilities; i.e.,

how to develop the heartbeat, or development rhythm required for each

development Sprint. Without an environment of Empowerment, the team has no

real focus, since each team member

 2.4 Overall, Individual, and Team Goals: Locus of Control

does not have a sense of what they are individually responsible for, what the other

team members are individually responsible for, and what communication is required

throughout the Sprint development [6 8] . There will eventually be a breakdown of

the team, a loss of effi ciency, and the team will not be successful in their

development efforts within cost and schedule constraints. Next we discuss the

concepts of goal setting for an agile development project: project/program, team,

and individual goals within the context of Locus of Control.

 2.4 Overall, Individual, and Team Goals: Locus of Control

A s explained above, the very nature of agile software development is to create a

loose structure both within each Sprint team and across the Sprint team structure.

The purpose of agile development is to allow developers, and subsequently the

system being developed to adapt and change as requirements, features, capabilities,

and/or development environment change over time (and they will change).

However, this does not mean that there are not system-level, team-level, and

individual-level goals at each point in time. In fact, it is more important in agile

development to have well-defi ned goals as teams and individual developers write

and test software, to ensure the software integrates and, more importantly, creates a

set of capabilities and a system the customer wanted and is paying for. Customer

and cross-team collaboration and feedback at each level is crucial to allow the teams

to adjust, either from customer needs or inter-team needs across the agile Sprint

developments. Again, independence and interdependence is essential for overall

successful development. Further refi nement of the Empowerment concept is to defi

ne, for each individual developer, what things are within their own control, and

those things are outside of their control, even if they affect the individual.

 This notion of internal vs. external control is called “Locus of Control.” Locus

of control refers to the extent to which individuals believe that they can control

events that affect them [6 3] . Individuals with a high internal locus of control

believe that events result primarily from their own behavior and actions. Those with

a high external locus of control believe that powerful others, fate, or chance

primarily determine events (in this case other team members, other teams, the

program/project manager, and/or the customer). Those with a high internal

locus of control have better control of their behavior, tend to exhibit better

interactive behaviors, and are more likely to attempt to infl uence other people than

those with a high external locus of control; they are more likely to assume that their

efforts will be successful [12]. They are more active in seeking information and

knowledge concerning their situation.

 Locus of control is an individual’s belief system regarding the causes of his or

her experiences and the factors to which that person attributes success of failure. It

can be assessed with the Rotter Internal–External Locus of Control Scale (see Fig.

2.4) [6 3] . Think about humans, and how each person experiences an event. Each

person will see reality differently and uniquely. There is also the notion of how one

interprets not just their local reality, but also the world reality [79]. This world

reality may be based on fact or impression.

Fig. 2.4 The locus of control scale

Fig. 2.5 Locus of control within an empowerment cycle

For further thought let’s then consider Constructivist Psychology.

According to “The internet Encyclopedia of Personal Construct Psychology”

the Constructivist philosophy is interested more in the people’s construction of the

world than they are in evaluating the extent to which such constructions are “true”

in representing a presumable external reality. It makes sense to look at this in the

form of legitimacies. What is true is factually legitimate and what is people’s

construction of the external reality is another form of legitimacy. In order to have

an effi cient, successful agile development team [62], each member must

understand and accept their internal and external level of Locus of Control, as well

as their Locus of Empowerment level. Figure 2.5 illustrates how this fl ows

throughout the Sprint development cycles.

 2.5 Self-Organization: The Myths and the Realities

How an individual sees the external vs. internal empowerment drives their view

of internal vs. external Locus of Control. During each development cycle,

evaluations are made (whether the individual is aware of it or not) as to their internal

and external Empowerment, and subsequent Locus of Control. Actions are

determined, based on this self-assessment, and self-effi cacy determination. Based

on the results of their efforts, individuals, as well as the team, and the entire

program/project reevaluate the effi cacy of the levels of internal vs. external

Empowerment that are allowed, and adjustments are made. These adjustments to

Empowerment levels drive changes in Locus of Control perception, which drives

further actions. This process is repeated throughout the project/program. The

manager must understand this process and make the necessary adjustment so that

each individual can operate at their peak self-effi cacy, as well as support team effi

cacy, providing the best atmosphere for successful development.

 2.5 Self-Organization: The Myths and the Realities

 One of the holy grails of agile development is self-organizing teams. Many

software developers dream of having a team with complete autonomy, able to

organize however works for them, completely without management involvement or

interference. However, what most developers fail to realize is that given to their

own devices, without training as to how to organize and what “organizing” actually

means, most would fail miserably. Often, agile development efforts fail, even with

efforts to educate the team about agile principles [5 3] . That is because the team

doesn’t fail because they don’t understand agile software development. It’s because

they don’t understand human nature and the diffi culties in taking a team of highly

motivated, strong personalities, and get them to automatically give up their egos,

preconceived notions, and past experiences, and embrace the agile team dynamics

required to put together a highly successful agile development effort. We call this

“Agile Team Dysfunctionality,” and there are many common dysfunctions that

plague improperly trained teams and team members. Figure 2.6 illustrates several

of the most serious dysfunctions, most of which come both from basic human nature

and from people’s experience with work on programs/projects in the past.

Nothing drives failure of agile development like past failures. Remember

Figs. 1 .1 and 1 .2 . Teams that have experienced Fig. 1 .2 are hard pressed to throw

off their suspicions and embrace agile development processes, team dynamics, and

the entire agile agenda fresh. Management must be cognizant of these dysfunctions

and work within the teams to dispel them.

Inability to recognize or deal with agile team dysfunctions can destabilize the

team(s) and derail the agile development process faster than anything else. Keeping

a stable set of Sprints teams is important, as constantly changing out team members

radically changes team dynamics, and affects both personal and team Empowerment

and Locus of Control [58]. Section 2.6 discusses the concept of stable team

membership.

Fig. 2.6 Common agile team dysfunctions

2.6 Creating a Stable Team Membership: Containing Entropy

 As previously discussed, it is vital to choose the right teams for any

program/project, but it is even more important for agile development. Teams with

stable memberships across Sprints are vital, as team members develop trust over

time, gain an understanding of each member’s strengths and idiosyncrasies, and,

with proper training, mentorship, and facilitation by the manager, settle into an agile

development “rhythm” throughout the program/project. If the team has to integrate

new members, effi ciency will always suffer until the new team member is properly

http://dx.doi.org/10.1007/978-3-319-09018-4_1#Fig1
http://dx.doi.org/10.1007/978-3-319-09018-4_1#Fig1
http://dx.doi.org/10.1007/978-3-319-09018-4_1#Fig2
http://dx.doi.org/10.1007/978-3-319-09018-4_1#Fig2

integrated into the rhythm. New expectations are created; the new person will

most likely have an entirely different notion of Empowerment and Locus of

Control than the previous team member, throwing the overall team out of balance.

A stable team can be a trusting and effi cient team [56]. There is generally an

increase in commitment over time with a stable team [52]. In order to facilitate

creation of stable agile sprint teams, the Agile Manager must recognize, understand,

and know how to deal with the dysfunctionalities discussed in Sect. 2.2. For each

dysfunction, the Agile Manager must take on a role, or provide guidance that dispels

the dysfunction and allows the team to move toward and independent cohesiveness

between the team members [60]. Figure 2.7 illustrates the Agile Manger’s role in

dealing with classical agile team

 2.6 Creating a Stable Team Membership: Containing Entropy

Fig. 2.7 The Agile Manager’s response to team dysfunctions

dysfunctions, creating a team that works together, in Empowered independence and

dependence, to develop software in an effi cient agile environment.

As depicted in Fig. 2.7 , for each of the agile team dysfunctions described in Fig.

2.6, Fig. 2.7 illustrates the Agile Manager’s response required to eliminate the

dysfunction and allow the agile development teams to function effectively and effi

ciently:

1. Absence of Trust: In order to build trust within the teams, the Agile Manager

must always be willing to take the lead and prove to the team members that they

will “roll up their sleeves” and do whatever is necessary to either get the

program/project moving or to keep it moving along.

2. Fear of Confl ict : Many developers are fearful of bringing up

issues, not wanting to start controversy within the team. Many people,

particularly strong introverts, may internalize the confl ict, never bringing it up,

but eventually the confl ict will drive controversy between the developers, create

a lack of trust, and may drive the team to withdraw from each other, destroying

the collaborative nature of agile development teams. In order to diffuse these

situations before they begin, the Agile Manager must be observant and cue in on

body language and utilize the soft people skills like paying attention to changes

in personal habits, language, friendliness, and other clues apparent between team

members, and facial expressions to understand when such nonverbal

controversies exist and work to resolve the confl ict before they begin to

negatively impact the development efforts.

3. Lack of Commitment : A lack of commitment to either the agile development

team or the agile process in general can destroy an agile program/project before

it gets started. Observing a low quality of work, absenteeism, lack of willingness

to communicate, or constantly seeming to be overwhelmed by the volume of

work may be indications of a lack of commitment. The Agile Manager needs to

understand the developer’s reasons for the lack of commitment, clarifying for the

developer what is expected, clearing up any misconceptions the developer may

have. In the end, if the Agile Manager does not feel they have dispelled the lack

of commitment, the developer must be removed from the team or there is little

hope for successful agile development. I know this sounds harsh, but agile only

works if all parties have a buy-in to the agile development process.

4. Avoidance of Accountability : There may be issues getting developers to step

up and take on rolls of responsibility within the agile teams because they are

afraid that if they take responsibility for the team’s activities during a given

Sprint and there are problems, they will be punished. This lack of accountability

needs to be dealt with in order for the Sprint development teams to develop a

good business rhythm and operate effectively. It is up to the Agile Manager to

confront issues, while not assigning blame or punishment, but working through

diffi cult issues, helping each developer learn from the issues in order to solidify

the teams and allow the developers to grow and mature as members of an agile

development team. This will pay off in the future as each developer becomes

more embedded in the agile process and learns to be effective in and excited

about agile programs/projects.

5. Inattention to Results: Some developers like the agile team process because

they feel they can just write code and let other people worry about the details,

results, testing, etc. But, it is vitally important that the entire team focus on the

results: working, error-free code with capabilities required for each Sprint that

can be demonstrated. If any of the developers/team members are not focused on

the results, the team will never develop a good agile development rhythm. Also,

one member being inattentive to details and results will breed mistrust between

the members, reducing the effectiveness of the team(s). Therefore, the Agile

Manger must keep the program/project vision in front of all developers and

teams, making sure everyone is marching down the same path, ensuring that the

collective outcomes of all the Sprint teams, across all of the Sprints, integrate

together and are heading toward a common, customer-focused goal.

 2.7 Challenging and Questioning Sprints:

Individual Responsibility

 Creating a team of highly motivated, capable, and experienced developers that are

expected to work in an agile development environment and not allowing them the

freedom, or Empowerment, to question and/or challenge Sprint capabilities,

planning, sequencing, etc., will destabilize the team quickly. The Agile Manager

should

 2.9 Keeping the Vision in Front of the Team: Ensuring System Integration

not force solutions on the team, for this fosters resentment and breeds an attitude of

lack of commitment to the program/project. If you build and train the teams

correctly, they should be able to discuss and come to agreement on how capabilities

are spread across Sprints, who is the best choice for what role across each Sprint,

and to work together when collaboration is needed. The ability to challenge and

question leads team members to a better understanding and more commitment to

the end goal, not only for each Sprint, but to the entire program/project as well [5

4] .

 2.8 Mentoring, Learning, and Creativity: Creating

an Environment of Growth

A gile development teams, at least the majority of teams, will be composed of

developers at a variety of experience levels. Each member comes with their own

strengths and weaknesses and should be provided an atmosphere that not only

allows them to succeed, but to grow and learn, both from the experience of

developing code for the program/project across the Sprints, but from each other as

well. If facilitated correctly by the Agile Manager, the agile development

program/project will allow opportunities for mentoring and learning. However, this

must be designed into the Sprints, both in schedule and in capability distribution

across the team members. Creating an atmosphere of mentoring, learning, and

creativity increases effi ciencies, as the team progresses through the Sprints, and

helps future programs/projects as well. Given the probable diversity of team

members, the Agile Manager should make sure everyone has the opportunity and

personal attitude of both mentoring and learning from each other. New software

techniques brought by junior developers may be necessary for certain capabilities

that older more experienced software developers may not be aware of. At the same

time, junior developers should also bring an attitude of mentoring and

learning, as the experienced developers can aid junior developers from going

down disastrous roads already traveled by senior developers. In short, the

atmosphere the Agile Manager must NOT bring to the agile development teams is

illustrated in Fig. 2.8 .

 2.9 Keeping the Vision in Front of the Team: Ensuring

System Integration

I have heard many developers tell me that the one advantage with agile

development is that they are free to do what they want, because it isn’t necessary to

establish a systems and software architecture for agile programs/projects. Such

notions lead to serious problems later in the development cycle. Without a systems

and software architecture, integration and fi nal testing of the system is problematic

at best and normally results in much rework and recoding to create a complete

system [26].

Fig. 2.8 The “Rigid” Agile Manager

Fig. 2.9 The traditional vs. agile development process

Each team member and each team must understand the end goals for the system.

You must remember that agility does not mean there is no structure, but the agile

development methodology provides the abilities to move about within a given

architecture or structure. Figure 2.9 illustrates the differences between the

traditional development process and the agile development process [57].

 2.9 Keeping the Vision in Front of the Team: Ensuring System Integration

Every aspect of the classical development cycle has a counterpart for the agile

design process, but is designed, or intended, to promote the agile mind-set: one of

adaptability to changing requirements or environments. Many are uncomfortable in

the agile software development paradigm. Many like the structure of classical

software development. So how does one understand who is and is not comfortable

with agile development. Can any developer be made to function within the

“freedom” of agile? In Chap. 3 we will explore all of the dynamics of agile

development teams, how to create, manage, facilitate, and empower agile

development teams.

W here the traditional development process involves and is focused on detailed

planning, budgeting, controlling, and program/project execution, the agile

development process must be adaptive and innovative, deriving solutions to a

changing requirements/capabilities baseline, the focus being on working software,

not cost and schedule. This is not to say that cost and schedule are not important in

agile development, because cost and schedule are always important in any

program/project execution. However, the agile development process has much more

fl exibility to deal with risks or issues that arise than the classical development

process, giving the Agile Manager more tools and more opportunities to adjust

without major rework in extensive schedules and budgets.

http://dx.doi.org/10.1007/978-3-319-09018-4_3

Chapter 3

 Understanding the Agile Team

Success in the modern, agile development era required Agile Managers and Leaders

who truly understand what agile development means, how to create agile teams, and

how agile teams collaborate, cooperate, and function in various situations,

particularly in geographically and culturally diverse environments. In addition, they

must understand the agile development cycle vs. the traditional development cycle

[15]. Figure 3.1 illustrates the classical program/project development cycle.

This program/project development cycle has been used for many decades.

Requirements are allocated and/or derived, program plans are made, budgets and

schedules established, and you march forward. For this development cycle, change

is bad, for it causes rework of the entire development cycle, driving up cost and

schedule. And, the farther into the development cycle you are when you discover

problems, or changes happen (new or changing requirements), the costlier they are

to “fi x” both from a cost and schedule perspective. Figure 3.2 illustrates the

increasing costs associated with changes, depending on when in the development

cycle the changes or problems are encountered.

As mentioned, when problems arise, or requirement changes happen, it drives a

replan of the program schedule and a re-estimation of costs to complete the

program/project, either an Estimate at Completion (EAC) or an Estimate to

Complete (ETC) or both. A new program plan must be put in place, new budgets

and schedule, and the development cycle restarts, as illustrated in Fig. 3.3 .

Problems occurring (particularly requirements changes) 1/3 or more through the

development cycle create major rework for the entire program, as the requirement

changes must be fl owed throughout all parts of the system and those affected

systems, subsystems, confi guration items, components, etc., that are affected must

be reworked, replanned, rescheduled, and a new baseline budget and schedule

created for execution. This can extend by 50 % or more the overall timeline and

budget for the program/project. In contrast, the agile development cycle is broken

up into small Sprints that are typically 2–6 weeks in length, although there is much

debate over the

© Springer International Publishing Switzerland 2015 27
J.A. Crowder, S. Friess, Agile Project Management: Managing for Success,

DOI 10.1007/978-3-319-09018-4_3

Fig. 3.1 Traditional program development cycle

Fig. 3.2 Costs associated with changes along the development timeline

Fig. 3.3 Replanning of the classical development cycle

 3 Understanding the Agile Team

Fig. 3.4 Typical agile program development cycle

Fig. 3.5 How requirements changes are handled in the agile process

proper length of a Sprint. Figure 3.4 illustrates a typical agile program development

cycle. In Fig. 3.4 we see the typical Sprint rhythm of initiating, planning, and e

xecution of agile Sprints during the agile development process.

Again, the length of the Sprints is dependent on the program/project, the

complexity of the software, total duration, and team membership. The duration of

the Sprints is not relevant to this discussion. One of the big advantages to agile

development is due to the adaptive nature of the Sprints. If a problem is discovered

it can be rolled into the next and subsequent Sprint planning sessions and rolled into

the schedules and does not require a major replan of the entire project, the way it

does in classical development. Figure 3.5 demonstrates this process. Normally,

because there is working software after each Sprint, problems are discovered earlier

in the development process than in conventional or classical development

methodologies. Customer and management feedback after each Sprint provide the

opportunities to re-vector the development efforts before major cost and schedule

have been expended.

We will not try to argue here over the length of Sprints, except to mention that

the length of Sprints is tied to the overall length and complexity of the program/

project development effort. Typically Sprints build in some sort of demo or

evaluation to demonstrate the goals of the Sprint have been achieved. If the Sprint

is too short, the work/evaluation ratios will be small; therefore the

accomplishment/cost will be low. The other problem with short Sprints is that

it will be diffi cult to achieve goals for complicated capabilities. Typically

30–45 days is a reasonable length for a Sprint, again, depending on the complexities

and overall goals for the software. The goal is to fi nd the right rhythm for the

project. Sprints should be long enough to produce working software that can be

properly evaluated to determine the program/ project is progressing along the

correct paths [78]. But if the Sprints are too long, too many capabilities will be

included in the Sprint, making end-of-Sprint demos and evaluations lengthy, and

any issues discovered during the Sprint make it more diffi cult to recover. Also, if

Sprints are too long, the retrospectives evaluation at the end of the Sprint is more

diffi cult as it is more diffi cult to remember what happened at the beginning of the

Sprint. Also, the clients/customers will be fl ooded with features to evaluate and

provide feedback; in other words, if the Sprints are too long, they are not “agile”

enough. Also, there should not be time between Sprints. The

demonstration/evaluation, retrospective, backlog evaluations, etc., should be done

and then the planning for the next Sprint should commence immediately. Again,

Sprint length is tied into the quality and abilities of the teams, the technology and

architecture of the systems, and the complexity of the software to be developed.

Sprint length should be kept as constant as possible, since changing the Sprint length

disrupts the rhythm of the project and the teams constantly have to reevaluate what

can get accomplished during any given Sprint.

 3.1 Agile Team Dynamics

 Understanding the mix of personalities and soft people skills, coupled with how

these manifest themselves across gender, ethnic backgrounds, cultural and

generational diversities, and other considerations, will become essential for modern

development leadership and management [5] . This new Agile Team paradigm is

uncomfortable to many managers, who may feel like they now have nothing to do,

given that central control and authority is given to the team, not to the Agile

Manager. However, the Agile Manager is as busy as or busier in this environment

than in a classical development effort [7 7] . The role of the facilitator across the

agile teams is a critical role to the overall success of the development

program/project. Many of the responsibilities of the Agile Manager are not all that

different from those in classical management, except that in the Agile Development

world, the Agile Manager must focus on the team’s ability to deliver working

software, rather than focus on traditional program/project measurement metrics [36

]. The Agile Manager must lead, inspire, and provide empowerment (coaching) to

the agile development team. The Agile Manager must be involved and facilitate,

from a “hands-off” perspective, those supporting functions that allow the agile

development team to be effective:

1. IT support and governance policies

2. Human Resource issues

3. Finance responsibilities

4. Support Teams—administrative, security, etc.

 3.1 Agile Team Dynamics

For the Agile Manager, this often involves adjusting one’s person management/

leadership style, and may require the Agile Manager to even work to affect and

change the company culture to allow the agile teams to be effective and successful.

It means working to acquire and utilize the abilities to understand and choose

individuals who possess competencies that are agile-value based [37].

Understanding and being able to assess developers’ skills, not just in designing,

coding, and testing, but in those skills that can make or break agile teams, are equally

important. The Agile Manager must ensure that they, as well as the development

team, understand the agile style, cultural dynamics, and team dynamics [38]. It is

essential that the team understand and be comfortable with the rhythm of the agile

development style, Sprint after Sprint, each with its own cycle of planning, coding,

testing, lessons learned, and then immediately moving on to the next Sprint. Figure

3.6 illustrates this recurring agile Sprint development rhythm.

Figure 3.6 illustrates the recursive nature of the agile development process. Once

the initial project vision and initial scope has been established (with stakeholder

buy-in), the teams are selected, the initial number and length of Sprints are

determined, IT environments established, and the initial Sprint is initiated. From

Sprint 0, the agile development program/project continues through the center two

blocks shown in Fig. 3.6 until the program/project is completed and it is time for fi

nal product release. Blocks 2 and 3 shown in Fig. 3.6 are the heart and soul of agile

development. Block 2 represents the Sprint software development, which includes

working with the stakeholders to establish the priorities and capabilities needed for

the current Sprint. Brain/Model storming is used to determine the test-driven

software designs required for the current Sprint capabilities, keeping in mind that

the current Sprint software must integrate with the previous volume of software

[48]. This is accomplished with a continuous integration process that ensures

working software at the end of the Sprint. Block 3 includes the fi nal Sprint

system/acceptance testing, releasing software through Sprint N into production and

demonstrating the software to ensure functionalities are acceptable. Stakeholder

involvement at each step ensures the fi nal software will be accepted at the end of

the project. After the fi nal Sprint, the fi nal software is released and fi nal

documentation is delivered, along with any training that is required.

Fig. 3.6 The agile development process rhythm

T his agile development process rhythm is important to the overall success of

the program/project. Without understanding, facilitating, and protecting this

rhythm, it will be diffi cult to achieve overall success from an agile development

program/ project. Keeping the teams functioning smoothly is the best thing the

Agile Manager can do to promote a successful project. Case Study #2 illustrates

this.

Case Study #2: The Disruptive Scrum Master

Project Length 24 months

Number of Sprints 9 Sprints

Number of Teams 5 Teams

Average Sprint Duration 8 weeks

Description This project was struggling early on as personnel from each of the agile

development teams were hesitant to take on the role of Scrum Master for the Sprints,

not wanting to be tagged as responsible if the team did not meet their capability

development goals for any given Sprint. To solve this, the Agile Manager brought

in a Senior Scrum Master from one of the company’s “showcase”

programs/projects. The teams assumed they would be coming in to train them on

how to be effective as a Scrum Master, and to teach management how to allow the

Scrum Masters to handle each development team across the Sprints, and to facilitate

the teams choosing the right Scrum Master for each Sprint. Instead, the Senior

Scrum Master took on the role of scrum master for all fi ve teams. This was

inherently a bad idea, as having one person act as Scrum Master for fi ve agile

development teams violates many of the roles that the Scrum Master needs to take

on during each of the development Sprints. The fi rst problem with one person

acting as Scrum Master for all the teams across all of the Sprints is that the person

taking on the role of Scrum Master should change at each Sprint, depending on the

complexity points required for that Sprint and the expertise of the team members,

based on the complexity points required for that Sprint. The role of the Scrum

Master includes, but is not restricted to:

1. Assists the product owner with the backlog, both in its creation and with its

maintenance.

2. Works with the agile development team to defi ne completion of the Sprint. What

are the criteria for “done?”

3. Removes stumbling blocks or impediments to progress, whether they are internal

to the agile development team, or outside the team (e.g., support needed from

another agile development team, or the IT team, etc.).

4. Facilitates the team’s self-organization; helps the team remove roadblocks as part

of the Sprint development team.

5. Helps the agile development team follow the Scrum process. As such, the Scrum

Master should have an excellent understanding of the Scrum agile development

management structures and must be willing to teach or mentor junior developers

in the process.

6. In the end, the Scrum Master should spend the Sprint making the rest of the

development team as productive as possible.

 3.1 Agile Team Dynamics

H aving described the role(s) of the Scrum Master, having one person act as the

Scrum Master across multiple agile development teams and across all Sprints within

the development process is inherently ineffi cient, violates the precepts of a Scrum

Master, and produces major problems that will ultimately hurt effi ciencies. The

issues that developed with the overall project are:

1. Each individual agile development team did not have access to the Scrum Master

throughout the development cycle, since the Scrum Master’s time and attention

were spread over fi ve development teams. This delayed problem resolution, road

block removal, etc.

2. The Scrum Master was not a domain expert on any part of the system being

developed, and therefore was unavailable as part of the development team

throughout all of the Sprint development cycles.

3. Much time was wasted each morning as a single Scrum Master had to cycle

through fi ve Scrum meetings, trying to keep track of which team expressed

which issues, and then having to prioritize whose issues got worked fi rst. This

resulted in much wasted time across the Sprint development teams and fostered

a sense of resentment for the Scrum Master.

4. Since the Scrum Master was not a domain expert in any part of the system being

developed, he could not act as mentor for junior engineers.

5. Having the same Scrum Master across fi ve agile development teams kills the

notion of self-organization and moves the teams Locus of Control outside to the

outside Scrum Master and not within the team. This causes a general lack of

ownership by the development teams [45].

6. Since there was only one Scrum Master, they tended to fi x problems by moving

people from one development team to another, destroying the cohesiveness of

the teams. The teams never knew who was going to be on the team, and

frequently the team members changed out in the middle of the Sprint.

T he result was that by the third Sprint, effi ciency had dropped to below 70 %

and the entire program was behind at least one full Sprint. Attempts to make the

developers work 15–20 hours of overtime was unsuccessful, since the environment

was not conducive to self-organization [4 6] . Even those that agreed to work the

overtime were not as productive as they should have been, since it took too long to

overcome any obstacles the teams encountered, since the Scrum Master is beholding

to all fi ve agile development teams.

 In the end, program management had to step in, remove the Scrum Master, and

regroup all the development teams, putting the project behind three full Sprints. The

program/project recovered, but not before increasing cost and schedule by over 40

%. The result was that management declared Agile Development “no better that

when we did it the old way. Might as well go back to a development method we all

understand.” Agile development was abandoned and many people left the

organization.

Lessons Learned : “If you go out of your way to violate the precepts of agile

development, don’t expect great results.”

 3.2 Team Member Dynamics

 While there are many issues the Agile Manager must learn to deal with as we move

into the future of software development projects, some of the major ones deal with

interpersonal issues between developers that are a result of culture, learned

behavior, or other factors beyond the control of the Agile Manager, but, nonetheless,

must be dealt with in order to have an effi cient, successful program/project. Some

of the major issues are:

1. Differences between Agile teams and Classical development team structure and

dynamics

2. Generational Differences—“Old Software Engineers” vs. “Young Software

Engineers”

3. Cultural and Diversity Differences

4. Virtual Team Dynamics

A ny one of these issues, if not dealt with carefully and skillfully, can derail a

development project. Often, more than one of these issues is prevalent in any given

team, adding to the complexity of creating a cohesive, effi cient agile software

development team. We will deal with each of these separately.

 3.2.1 Differences Between Classical and Agile Team Dynamics

O ne of the fi rst things Agile Managers must understand and come to grips with is

the inherent differences in team dynamics, based on the nature of Agile vs. Classical

development teams. Table 3.1 illustrates these differences.

As Table 3.1 indicates, the major differences between classical development

team dynamics and the dynamics of an agile development team have to do with

where the empowerment lies. For the classical development program/project,

empowerment lies with the manager. Then in decreasing level of authority, you have

a senior software developer (programmer), a lead system architect, and a lead test

engineer. At the bottom of the authority chain are the software developers, systems

engineers, testers, etc. Planning is done by the manager, design is done by specifi c

people (or a specifi c team), and the requirements and design artifacts (Use Cases,

Activity Diagrams, etc.) are fl owed down to the software developers to code. It is

often diffi cult for software developers at the lower levels to feel “ownership” of the

fi nal product, since they had no say in its design.

 In contrast, for the agile development process, the dynamics are quite different.

Empowerment happens at the Sprint team level. The development teams are cross-

functional, containing team members from software, systems, test, etc., so that the

team can plan and execute each Sprint successfully, with all disciplines having buy

in on what is being developed across each Sprint, and why. The teams should be as

self-organizing as possible. We will speak more about this later. The ability of a

team to self-organize assumes the team understands how to self-organize, and all

the

Table 3.1 Agile vs. non-agile team dynamics

 Agile teams Non-agile teams

 Teams are self-organizing Teams are directed and managed by manager

 Teams are cross-functional, with all skills

necessary for deliving a product sprint

(e.g., systems, software, test, etc.)

 Teams contain sub-teams that have specifi c skill

sets. Each person specializes in an particular skill

area, such as designing, programming, testing, etc.

 All team members are called developers,

regardless of the work done
 There are specifi c titles, such as programmer,

senior programmer, project manager, tester,

systems architect, etc.

 Recommended size is 5–12 nominally There is no recommended size for the team

 There is no longer a manager that leads the

team from the front. There are management

roles to help the team run smoothly.

Manager becomes more of a facilitator for

the team

 There is a manager, who directs and leads the

team from the front

 All functions for sprint development

(Planning, estimating, design,

coding, testing, release, and customer

collaboration) are done by the team

 Planning functions are performed by manager.

Design, coding, and testing, are done by specifi c

team members with specifi c skill sets for each

part. Releases are done by a separate team

 Knowledge and power are colocated

throughout the team, creating their

own center of authority

 Knowledge and power are located within

management

 Responsibility and attachment are shared

as a whole within the team
 Responsibility and commitment are attached only

to a single job for project/sub-project

team members are on board with taking on different roles as the Sprints progress

through the development cycles [8]. One of the important precepts of successful

agile development teams is that each team member leave their egos at the door. The

purpose is to produce working software that supports an operationally viable

system, not to promote any one person. The Agile Manager must understand this as

well. The role of the facilitator is vitally important to the overall success of the

project. And, if the teams are successful, the Agile Manager looks good and will be

considered a success. The whole team owns the successes, and the whole team owns

the failures. Again, sometimes this is a diffi cult concept for people to understand

and accept as they enter into an agile development program/project.

 3.2.2 Generational Differences in Team Members

 In Sect. 1.2.1 , we discussed the history of software engineering. While there was

computer programming before the late 1960s, it was really in the late 1960s and

early 1970s that software engineering as a discipline really took off. What that

means is here, in 2014, those earliest software engineers would be in there early

http://dx.doi.org/10.1007/978-3-319-09018-4_1#Sec3
http://dx.doi.org/10.1007/978-3-319-09018-4_1#Sec3

60s. If you know many software developers, you understand that the classical

view of programmers is a geek programmer, jacked in with headphones on, hunched

over his computer programming for hours and hours on end. And, by the way, that’s

not an unreasonable view. What one fi nds is the 60+ year old software engineers

are the same in that respect as young software engineers. One software engineer, 63

years old and still coding, more now than ever, was heard to say, “Just put me at my

computer, throw a few hunks of meat to me now and then and leave me alone and

let me code.” In this respect, young and old developers are alike. However,

inevitably generational biases come into play as you form agile development teams.

While the diversity of age brings the possibility of new and exciting solutions to the

complex software problems of our ever-continuing technologies, getting all parties

to play well together can be a daunting task for the Agile Manager. The older, more

experienced software engineers may feel like there is nothing they can learn from

these young upstarts, while the young software engineers assume the older software

engineers couldn’t possibly understand modern programming techniques and

methodologies. We have found that those software developers that have stayed in

development and have not gone the management route have, in general, kept up

with modern methods and languages. Figure 3.7 illustrates, in an over top sense,

how each generation of software developer sees the other.

One thing is sure, if given the chance, each can bring their own expertise to the

table and each can learn from the other one. It is up to the Agile Manager to facilitate

this mutual respect for the other’s skills. The way to NOT accomplish this is to

throw them in a room, to tell them they are a team, and to “do good agile things.”

Fig. 3.7 How each generation of software developers sees the other

The Agile Manager needs to foster respect between each of their developers. One

excellent way is to facilitate brainstorming sessions during the beginning stages of

the project, allowing very free-form thinking between the team to come up with

innovative ways of solving the program/project before them. This allows each team

member to express their views, based on their own experiences and expertise,

illustrating to the other team members what they bring to the table. This also helps

the Agile Manager understand each team member better, by seeing them in this

environment. The Agile Manager needs to understand their team, and not just

programming skills, but personalities, idiosyncrasies, biases, their sense of Locus

of Control and Empowerment, as well as understanding cultural differences that

may exist [1 0] .

 Tom Perry 1 has compiled a number of learning games for agile development

teams that the Agile Manager might fi nd useful. Another important aspect of agile

development team dynamics is the retrospective after each Sprint. It is important

that the Agile Manager allow the team to express their blunt and honest views as to

what went right and what went wrong so the team and the Agile Manager can learn

how the team dynamics are working. It may be necessary for the Agile Manager to

draw out certain team members, making sure they get the chance to express their

1 http://agiletools.wordpress.com/2009/06/22/learning-games/

http://agiletools.wordpress.com/2009/06/22/learning-games/

views. It is important for the agile development team members feel they are

self- organizing, rather than having structure imposed upon them. It is also

important for the team members to feel like they are allowed to “play” with different

ideas, techniques, and software structures in forming solutions for each Sprint.

Case Study #3: Scaling Agile Development Methodologies Many believe that the

agile development philosophy works for small to medium programs/projects, but

will ultimately fail for large development efforts. However, if agile methodologies

are applied correctly, and if there is a commitment throughout the project to agile,

even very large programs/projects can benefi t from the agile development

paradigm. While many people envision agile development as a small group of

develops huddled together in the same room, handling everything within their own

team, not required to communicate or collaborate with other teams, and while many

may think this is nirvana for agile development, it is not reality, even for small

programs/projects. But is it possible to realize the benefi ts of agile development for

a large- scale development program (e.g., satellite system, commercial space fl ight

software, etc.)?

T he real challenge for large-scale agile development programs/projects is

keeping the big picture out in front of all of the teams. Since requirements,

architecture, Use Cases, database designs, and dependencies, by defi nition, evolve

in an agile development effort, it is incumbent upon the Agile Manager to ensure

that the architects and systems engineers within each team communicate and

collaborate often to ensure that all teams are on the same page. Admittedly this

resembles herding cats, but the goal is to make sure the teams aren’t too far afi eld

of each other, and are generally headed in the same direction, as specifi ed by the

overall systems and software architecture. According to Joe McKendrick, “…agile

has a fractal, scalable nature that allows for growth.” 2

 In one large-scale agile development program/project (launch vehicle), most of

the teams were housed in an aircraft hangar, with a very large white board at one

end of the hangar that had the entire system and software architecture drawn on the

white board. The program/project consisted of 10 on-site and 2 off-site Scrum

teams, each with 20 team members, consisting of a system and software architect,

systems engineers (2), test engineers (2), and 14 developers. Every morning the

system and software architects held a 15–20 minute Scrum to review the overall

architecture to ensure that everyone was on the same page. Then each Scrum team

held their own 15-minute Scrum to plan the day, fi nd out what roadblocks existed,

and get ready to roll for the day. The reason the team was all housed in a hangar is

that the actual launch vehicle was being built at the other end of the hangar. Not

only was the system and software architecture kept in front of the teams at all times,

the actual vehicle was at the end of the hangar and could be viewed at any time,

even for the teams that were off-site (as described there were two of the teams that

2 http://www.zdnet.com/yes-agile-works-in-larger-enterprise-projects-too-7000020875/

http://www.zdnet.com/yes-agile-works-in-larger-enterprise-projects-too-7000020875/
http://www.zdnet.com/yes-agile-works-in-larger-enterprise-projects-too-7000020875/

were off-site) but continually connected by several closed circuit cameras and

VTCs so they could be involved all throughout every day and throughout the entire

development process.

 This seems like an extreme example of scaled agile development, but the result

was startling, radically reducing the time to delivery, and vastly reducing the amount

of rework that is typical with large-scale space vehicle projects.

 3.2.3 Cultural and Diversity Differences

 As we have discussed at length throughout the book, the Agile Manager must

incorporate new management concepts that include the notion of becoming a

facilitator for a group of self-organizing software development teams [4]. The agile

development methodologies grew out of an understanding that the classical

“factory” model of management and development hindered, rather than enhanced,

software development. Slowly, over time, the effi ciencies gained by collaboration

between developers, and between the developers and their customers, allowed

software to be delivered that was more useful, or “operationally viable,” than when

software was developed in a vacuum [76]. The crucial part of agile development,

and the attitude the Agile Manager must continually foster and facilitate, is constant,

open collaboration.

 But how does the Agile Manager foster collaboration. As we have discussed,

agile development teams are typically 8–12 developers. Collaboration is not

facilitated by having them each have their own offi ce, working independently.

However, having them all crammed into a small offi ce with no chance to “think” is

not the answer either. If you want agile software development teams that collaborate

and work as a team, you need to provide a team atmosphere; a “team room” for each

agile development team with tables that allow several people to sit and work.

You can almost foster collaboration “by accident” as team members overhear c

onversations. However, there must also be space where team members can go to

have privacy to think through issues. The driving point is that the norm for the team

should be working in a collaborative work environment, unencumbered by too

much management oversight.

O ne aspect of working in a “team environment” that must be taken into account

by the Agile Manager is cultural differences between team members. In our

culturally diverse world, even though software engineers may have similar

personalities, which may have driven them into software development, their cultural

differences will undoubtedly come out during the hours and hours of collaboration

across the Sprints. Many managers disappointingly try to assemble “homogeneous”

teams of similar developers. The experienced Agile Manager understands that while

the homogeneous team may experience increased effi ciencies in the beginning. The

diverse teams pass them as the diversity of ideas and experiences drive the

development of innovative solutions to diffi cult software problems and

complexities. In an atmosphere of continuous collaboration, you want people who

can generalize and people who are serious detail people. Self-organization demands

an emergent and collaborative workplace. In the diverse agile team development

environment, new and different ideas, varying skill sets, and experiences drive

innovation solutions and effi cient development [4 7] . The better the collaborative

environment, the greater the chance for “AHA” moments among the team, where

the team realizes that together they have derived a solution that is better than any of

them had thought of individually [47].

 Having said that diverse teams can improve innovation and effi ciencies, there

are challenges for the Agile Manager in dealing with diversity and cultural

differences. Geert Hofstede, a Dutch social psychologist, defi ned culture in terms

of “software of the mind” [38], describing how cultural differences carry “cultural

programming” that drives them as to how they understand what they experience,

which infl uences their point of view on almost everything. For the Agile Manager,

understanding where developers from different cultures are coming from helps them

understand how to help facilitate the team, how to remove roadblocks, and how to

bring about an atmosphere of collaboration and cooperation. One of the big

challenges for teams with diversity and cultural differences is to understand and

realize that many software development processes, including many aspects of agile

development, were fostered, matured, and “grew up” in the United States and

therefore tend to be described from an American individualist point of view [3 7] .

Hofstede explains that many cultural differences arise from viewpoints of

individualist vs. collectivist viewpoints. If the team is allowed to downplay

collaboration, and act more as individuals in their software development, it is easy

for misunderstandings to develop between developers as to how and why certain

things were done by each individual developer. Misunderstandings foster a lack of

trust between developers. Individualism in agile development teams fosters attitudes

of ego, mistrust, and “not invented here,” when presented with differing viewpoints.

If the Agile Manager creates an environment of openness and trust, it is very

possible to work together in teams where you have different viewpoints: using those

viewpoints to arrive at solutions none of the team could have created on their own.

 3.2.4 Virtual Team Dynamics

G iven the discussion above, the Agile Manager might ask, “Does this mean virtual

teams won’t work?” This is a fair question, as many experts in the fi eld of agile

development espouse that true collaboration can only happen if everyone is in the

same place. And while this may be preferable, it is not always possible. However,

there are ways the Agile Manager can facilitate geographically diverse “virtual

teams” and still create, to a great extent, an atmosphere of collaboration and

cooperation. One methodology that has been used by some organizations is to

initially bring the team together for the start of the program/project to facilitate the

initial collaboration between the team members. This could be for 2–6 weeks at the

beginning, depending on the length of the development program/project. Then the

team members return home, but keep in daily contact, either by Video

Teleconference (VTC), by Skype, or even by phone. After a given length of time,

the team is then reassembled, possibly at one of the other locations, and the

collaboration rekindled between the teams. This allows them to foster trust and

cooperation, to create an atmosphere and feeling of collaboration, even though they

are geographically separated. Obviously there are challenges to be overcome with

virtual teams, but it is possible, and it’s up to the Agile Manager to keep track of

what is going on (not interfere, but observe) and remove any roadblocks

encountered so the teams can work effi ciently.

 The main point of all of this discussion is that the agile development project

succeeds or fails, based on the vigilance, understanding, and commitment of the

Agile Manager, fi rst to the agile process in general, but also to creating the right

team dynamics throughout the agile development life cycle. While the Agile

Manager can develop the skills to form and facilitate agile development teams, there

are tools the manager will need to provide to the teams so that the collaborations are

captured, along with retrospectives, to allow each team member to grow, and so the

Agile Manager can review what worked and didn’t work for each program/project.

Also, the Agile Manager will need their own productivity and metrics tools to

measure progress, effi ciency, and quality of the software development across the

Sprints.

 3.2.5 Diversity and Inclusiveness

D iversity and Inclusiveness are important dynamics that companies are embracing.

Building development teams that are not just effective but embrace the concepts of

diversity and inclusiveness is important, but most leaders and managers have not

been trained for the dynamics these bring (both good and bad) to teams [20]. The

concept of inclusiveness and diversity has grown over the last two decades and is

now an integral part of modern organizations. Most large companies have corporate

Diversity and Inclusiveness Offi cers that ensure the companies policies and

practices are in-line with the diversity and inclusiveness protocols [27]. The basic

precepts of diversity and inclusiveness came out of the progressive models

developed in the 1960s that originally drove affi rmative action and the need to

comply with equal opportunity laws. In today’s workforce, diversity and

inclusiveness defi nes [11]:

The similarities and differences among coworkers in terms of their ages, cultural backgrounds,

physical abilities and disabilities, race, religion, gender, and gender orientation.

W here it is understood that such differences have no bearing on abilities

within the workplace and allows teams to be built from the best personnel, in terms

of technical skills as well as soft people skills discussed earlier in the book. The

most effi cient and effective agile development teams have very little to do with the

d ifferences between diverse groups, and everything to do with aligning skills, p

ersonalities, and team dynamics. Diversity and inclusiveness models today refl ect

the understanding by companies that a multicultural, multi-diverse atmosphere

promotes diversity of thought and perspectives, as well as better problem-solving

capabilities—traits crucial to successful agile development, where innovative s

olutions may be required at each Sprint.

 The heart of a company’s ability to capture and retain a diverse workforce is refl

ected in their leadership. The transformational Agile Manager focuses on

competencies that allow cohesive team dynamics among the agile development

teams, in terms of both technical and interpersonal (hard and soft) skills. The

inclusive and diverse Agile Manager seeks to create a team culture where they see

diversity and inclusiveness as an infl uential resource to enhance the overall Sprint

development team effectiveness [59]. And while recognizing and embracing

diversity and inclusiveness helps the Agile Manager to link a variety of talents

together to form strong agile development teams, the act of embracing and

recognizing the need for diversity and inclusiveness provides personnel an

atmosphere that fosters a sense of belonging, to feel empowered, and to internalize

their Locus of Control, allowing their talents, thoughts, and innovations to come out

and be utilized throughout the agile development program/project, allowing each

developer to contribute in a unique way that refl ects the diversity of the group. The

next chapter describes some of these productivity tools available to developers, the

team as a whole, and the Agile Manager [44].

Chapter 4

 Productivity Tools for the Modern Team

Providing an agile development team with tools to be productive goes beyond

handing each one of them a laptop with compilers. Communication and

collaboration tools, whether face-to-face or geographically diverse, are crucial in

modern teams. Here we discuss collaboration tools and other tools that will be

crucial today and in the future. We will discuss three major types of productivity

tools for agile development programs/projects:

1. Productivity tools for the Agile Manager

2. Productivity tools for the agile software developer

3. Collaboration tools for agile development teams

 4.1 Productivity Tools for the Agile Manager

F or the Agile Manager, planning, tracking, and managing a program/project is very

different from managing a classical development project. For the Agile Manager, a

coordinated and integrated set of productivity tools should allow the Agile Manager

to manage overall and individual Sprint team’s backlogs, overall and individual

burn-down and burn-up charts, capture Sprint reviews and retrospectives, and plan

Sprints, including changes associated with the entire agile development process.

Integration of requirements, UML artifacts, and designs is more important in an

agile development effort, given the dynamic nature of agile development. Without

productivity tools to easily track all of the moving parts within an agile development

program/project, it is easy for the Agile Manager to lose control of progress and

issues. One important piece that is often missed is the issue of release control. High-

level release planning and coordination across the Sprint teams is important. Given

the fl uidity of moving capabilities between Sprints, based on needs and

coordination between Sprint teams, keeping track of releases and what is in and out

of a given software release is essential and helps manage customer expectations as

 © Springer International Publishing Switzerland 2015 43
J.A. Crowder, S. Friess, Agile Project Management: Managing for Success,
DOI 10.1007/978-3-319-09018-4_4

demonstrations and review meetings occur. This should all be integrated

together into comprehensive agile management software tools. Below is a

review of the features of most of the current agile management commercial

software packages that are available. Some are free, open source software; some are

Commercial Off-theShelf (COTS) software, each with its own advantages and

disadvantages. Each Agile Manager must assess the tools they feel are necessary,

given the size and complexity of their agile development program/project. The

following discussion describes the general features COTS software packages

designed to manage agile development programs/projects include, obviously with

various levels of success and features unique to each COTS software package.

 4.1.1 Agile Management Software

 COTS agile program/project management software packages are specifi cally

designed to be productivity tools for agile program/project management. Most are

designed to work well with Scrum, ScrumBan, Kanban, and many include

provisions for custom agile management methods [66]. Most include integrated

tools for:

1. Product and Sprint backlog management

2. High-level and Sprint planning

3. Capture of daily Scrum meetings

4. Capture of Sprint retrospectives

5. High-level and Sprint release management

6. Variety of graphics, including burn-down charts, including Sprint, overall

program/project, and release metrics

 4.2 Productivity Tools for the Agile Developer

I n his work on Global Software Development, Iyengar [4 0] explains that the rapid

increase in agile software development has led to an explosion of productivity tools.

Most are geared at the Agile Manager, but tools are needed to enhance collaboration

and cooperation among agile team members, whether they are collocated or in

different continents. If the Agile Manager has not fully adopted the philosophy of

the agile process, productivity tools provided to agile team members may be limited

to software tools like Microsoft Project © , spreadsheets like Microsoft Excel © , or

tools like OneNote ©. While these are fi ne tools for the purposes they were

intended, they fall very short of providing collaboration, idea generation and

capture, retrospective analysis, or capturing software and its context for future use.

Ron Jeffries [4 2] , the father of Extreme Programming, says it this way:

I think that people and how they interact on a project are the most important thing, and I

think that they need to create a way of working – a process – that works best for them.

Because their interactions are critical to project success, I suggest that teams begin the work

with an approach that will bring them together as people, not one that will let them

remain apart, communicating electronically.—Ron Jeffries
 4.2 Productivity Tools for the Agile

Developer 45

Now there are obvious simple collaboration/brainstorming tools like white

boards. Of particular use are electronic white boards that electronically capture what

is written on the white board and stores it for transfer and review later. There are

many COTS software products that promise to be the end-all for agile development,

but the majority are focused on the management of agile teams and not on actual

team productivity, collaboration, and cooperative development.

W hile it is important to have individual workstations that enable stand-alone

work environments for software developers, you still have engineering artifacts and

data stored separately. These personal environments must be turned into

interpersonal collaborative enterprise environments [1 9] . As the pace of design and

implementation increases, there is a need for increased collaboration and continuous

capture of brainstorming, design, coding, and test artifacts. Realization of this

environment is crucial to overall effi ciency and success.

I ncreased collaboration and increased capture of artifacts help increase quality,

since all development teams and individuals understand the end goal of the system,

increasing the effi ciency of software integration after each Sprint. Many managers

believe the push to increase quality increases cost of development, and it should be

left to the built-in time after each Sprint to handle software defi ciencies (bugs).

However, this is a fallacy, as increasing quality without increasing cost is possible.

What are required are overall analysis, design, development, and testing

environments where all aspects of development efforts across developers are

captured and shared easily throughout the program/project. What is required is a

holistic approach to software analysis, design, implementation, and test that forms

a fl uid, adaptive, and quality/test-driven development philosophy that can take

software engineering into the future. In short, the productivity tools the Agile

Manager needs to make available to the agile development teams, and to

themselves, need to account for the three main domains of agile development (see

Fig. 4.1) . Management must fi rst embrace new organizational structures required

for agile development. Second, they must provide real productivity and

collaboration tools specifi cally designed to

Fig. 4.1 The three domains to master for real agile development

facilitate agile development (collaboration and complete capture of analysis, design,

implementation, and test artifacts). Third, the atmosphere and methodologies should

provide increased quality up front; quality should be built into the test-driven design

and implementation, not forced in by fi xing the code after the Sprints.

 4.3 The Future of Agile Development Productivity Tools

S o what does the future hold for agile development teams that will enhance their

productivity? Productivity tools that are geared to software engineers engaged in

agile development must take a paradigm shift in foundation. Instead of process-

central tools, developers need people-centric productivity tools (see Fig. 4.2) that

foster an environment of innovation, collaboration, effi ciency, and as much

automation as is reasonable for the developer. Not everything can be automated, but

mundane tasks like documentation, capture of ideas, requirements, and designs,

resource management, etc. Many classical mangers may view automation as

threatening. However, automation has always resulted in allowing engineers,

managers, and others to move on to more important tasks, allowing more

innovation, mentoring, and continued education.

Organizations must strive to provide an environment where budget is not

centered on time and motion (Earned Value only based on Cost and Schedule), but

must be centered on the perceived values of the objectives of the project [2 5] .

Working software should be front and center in determination of “Sprint Value.”

The agile development teams must be free to self-organize, generate work plans,

resource management plans, and pick the productivity tools appropriate for the

project and teams [7 3] . However, this freedom must include the Agile Manager,

whose role of

Fig. 4.2 People-centric paradigm for

agile development
 4.3 The Future of Agile Development

Productivity Tools 47

Fig. 4.3 The modern agile development productivity environment

facilitator is essential, providing the tools and environment that allows the Sprint

teams to be successful. The Agile Manager must provide an atmosphere of

collaboration and freedom, while at the same time demanding discipline across the

individuals and their teams. Agile development does not mean free-for-all, but

allows the developers to be as productive as possible.

 Lastly, the organizational, physical, and IT environments must promote

continual process and product improvement over the life cycle of the

program/project. Quality characteristics and working software must be the

Sprint teams’ central objectives. This provides the teams focus throughout the

development process. Future productivity environments/systems that allow

automation, collaboration, and inclusion of all aspects of product development may

look similar to Fig. 4.3 [19].

If one studies Fig. 4.3 you will notice many of the products that are used today.

You will fi nd Unifi ed Modeling Language (UML) tools, requirements tools

(DOORS ©) , change management tools, etc. The difference is the central automated

complete system design tool, the Collaboration Framework, the heart of which is

the Electronic, Engineering Notebook. The Electronic, Engineering Notebook is an

electronic version of the old “Engineering Notebook” that started in the 1940s and

1950s. The difference is it automatically captures, logs, correlates, and publishes all

aspects of the program/project. Figure 4.4 illustrates this [19].

Fig. 4.4 The electronic, engineering notebook

One very important aspect of the agile development process is how to accurately

and appropriately measure the productivity and effi ciency of the development

throughout the agile life cycle. Chapter 5 deals with how the Earned Value process

must be completely revamped, and a new Earned Value Management System must

be created to adequately handle agile software development.

http://dx.doi.org/10.1007/978-3-319-09018-4_5

Chapter 5

Measuring Success in an Agile World:

Agile EVMS

The Earned Value Measurement System (EVMS) has become a mainstay in

Commercial and Government groups to measure progress and success of a project.

EVMS is espoused to be an effective (albeit subjective) measure, but it does not

play well with agile development efforts, due to its requirement of static schedules

and work plans [55]. Here we introduce a new paradigm for EVMS that will

accommodate and be effective in measuring progress and problems within agile

development efforts.

5.1 Brief History of the Earned Value Management System

The government instituted the formal practice of Earned Value in the 1960s as a

methodology for program/project management in terms of scope, cost, and

schedule. Earned Value promises to provide accurate measurements of

program/project performance as well as identifying problems, a crucial component

of program/ project management [73]. The basic 11 precepts or elements of the

Earned Value Management system are:

1. Define Authorized Work Elements

2. Identify Program Organizational Structure

3. Integrate the Work Breakdown Structure (WBS) and Organizational

Breakdown Structure (OBS)

4. Schedule the Work

5. Identify Products and Milestones

6. Set Time-Phased Budget

7. Record Direct Costs

8. Determine Variances

9. Sum Data and Variances

10. Manage Action Plans

11. Incorporate Changes

© Springer International Publishing Switzerland 2015 49
J.A. Crowder, S. Friess, Agile Project Management: Managing for Success,

 50
DOI 10.1007/978-3-319-09018-4_5

Fig. 5.1 Classical waterfall program/project high-level execution

By the late 1980s and early 1990s, the EVMS became a mainstay tool for

managing, measuring, and executing programs/projects among the Department of

Defense (DoD) and their respective Defense Contractors, Department of Energy

(DoE), and NASA [21]. Since then many large commercial companies have adopted

EVMS as well, like Boeing Commercial Airplane Division [65]. There are many

Earned Value COTS software packages available for classical Earned Value. Some

of the most popular ones are Microsoft Project©, Open Plan©, and Deltek wInsight©.

These products are geared toward helping to plan, measure, analyze, and execute

the classical waterfall development methodology [1]. Figure 5.1 illustrates this

process, which includes measurement and analysis of earned value metrics.

Contrasting Fig. 5.1, Fig. 5.2 illustrates the changes associated with creating a

similar execution plan for agile development programs/projects. As you can see

from Fig. 5.2, the flow is quite different, and includes the recursive Sprint

development process that continually refines the requirements as the Sprints

progress [72]. The emphasis at the end of each Sprint is on working software that

integrates together at the end of each Sprint. Customer input is sought and the Sprint

plans and capability plans adjusted, based on the Sprint perspectives, integration

and test, along with customer input. Included in the agile program/project execution

process is the ability for the Sprint teams to self-organize for each Sprint: team

members taking on different roles across the Sprints based on their capabilities and

expertise [50].
5.1 Brief History of the Earned Value Management System

 51

Fig. 5.2 The agile program/project high-level execution

Case Study #4: Classical EVMS for Agile Development (FAILURE)

Project Length 9 Months

Number of Sprints 5 Sprints

Number of Teams 3 Teams

Average Sprint Duration 5 weeks

Case Study 4 illustrates that just because you use a Scrum Management style,

agile software development will never just show up as an emergent property of the

program/project by accident. Many a program manager has exclaimed, “We have a

backlog, we have Scrum meetings; we are most certainly agile.” While both of these

are properties that may be utilized for agile programs/projects, their presence alone

does not define agile. They are simply tools to help you, assuming you are

committed to the agile development methodology, have established an actual agile

development program/project, and manage it like an agile manager, and not a “rigid

agile manager.” Likewise, if the manager attempts to measure the progress of an

agile development program/project using the same methods, and performs the same

analysis as waterfall development, not only will the manager be constantly

frustrated, they will never understand the real progress, or success/failure of their

program/ project. What follows is a classic example of classical EVMS used to

measure an agile development program/project, albeit pseudo-agile.

 52

The manager began the effort espousing the precepts of agile; however

the entire program/project was laid out in detail in the Integrate Master Schedule

across the entire development cycle, with each task being 4–5 weeks in length, tied

together with predecessors and successors. The program was not laid out by Sprints,

but laid out as a classical waterfall development project, and collections of tasks that

were coincident (or done in parallel) and about the same length were identified as

“Sprints.” There were overarching systems and software leads, and development

teams were software engineers only, not systems, software, test, etc., or cross-

functional, as you would expect for a true agile development effort.

Trying to keep up the appearance of agile, the developers were allowed to

function autonomously and write software based on what capabilities they deemed

were required at each “Sprint.” Meanwhile, the manager made sure the Earned

Value Cost Performance Index (CPI) and Schedule Performance Index (SPI) at the

end of each reporting period were always 1, assuming the teams would end up

finishing the software on time, would meet the customer requirements, and in the

end, no one would ask any questions. Unfortunately, midstream, right before one of

the End-of- Sprint demonstrations, the customer informed the manager that is was

necessary to change the requirements, as expectations had changed; congressional

budgets had changed, and it was necessary to scale back on the capabilities to be

delivered. Unfortunately, some of those capabilities were already done and folded

into the demonstration that followed; capabilities that the waterfall, iterative

schedule showed weren’t scheduled for months. Unfortunately for the manager, the

agile development teams had decided that they were easier incorporated into the

original software framework for the program/project and decided to add them in

earlier. Had the manager acted like an agile manager and paid attention to what the

agile development teams were actually producing, they would have known what

was happening. The emphasis was on showing a stable Earned Value Metrics,

software productivity numbers were on track (not taking into account what

capabilities were being coded), and things looked great to upper management. What

was discovered was that the capabilities the customer had to have, had been placed

on the backlog for later Sprints, meaning it wasn’t possible to scale back on the

requirements, or cost estimate, or schedule estimate. The customer ordered an

immediate Estimateto- Complete, and discovered the inconsistencies in Earned

Value reporting Metrics. The project was cancelled, the manager was fired, and it

was a long time before the company successfully procured another contract.

Committing to agile up front is crucial to its success. Having truly agile earned

value metrics that reflect the rhythms and processes of agile software development

is essential as agile development becomes more prevalent in the industry. The next

section defines a new Earned Value system, one with agile EVMS metrics that

reflect the agile process, while being just as useful for the manager to assess the

cost, schedule, productivity, and quality of their program/project. I know managers

love their tried and true EVMS metrics, and change is hard and often frightening.

Please refrain from the pitchforks and torches till you get through the entire

discussion (see Fig. 5.3).

5.2 Assessing Agile Development: Agile EVMS 53

Fig. 5.3 How managers may view a change to the EVMS

5.2 Assessing Agile Development: Agile EVMS

Earned Value and the Earned Value Management System (EVMS) provides cost

and schedule performance metrics that, if handled carefully and honestly, can be

useful in helping the program/project manager track the progress and get early

indications of problems. Basically, Earned Value measures whether you have

earned the right to spend that much money, and whether you have earned the right

to spend that much schedule [61]. Some of the metrics that Earned Value uses the

measure program/project progress are:

1. BCWS: Budgeted Cost of Work Scheduled. This represents the “planned” value

of the work scheduled for a given time period.

2. BCWP: Budgeted Cost of Work Performed. This represents the cost (from the

original budget) of the work that was actually performed during a given time

period. This metric is used in both of the Earned Value performance calculations.

3. ACWP: Actual Cost of Work Performed. This represents the actual collected

costs over a given time period for the work that was actually performed. This

may or may not represent the amount of work that was supposed to be

accomplished during a given time period.

4. BAC: Budget at Completion. This is the total cost of the program/project at

completion, or the BCWS at the end of the program/project.

5.2 Assessing Agile Development: Agile EVMS 54

5. EAC: Estimate at Completion. This is the ACWP to date, plus the estimate to

complete the remaining work.

6. CV: Cost Variance. CV = BCWP − ACWP, or the Budget cost of the work

actually performed during a given time period (what they work should have

cost), minus what the actual costs were for the work performed during the same

time period. If CV is negative, then the cost of the work performed was

underestimated. If CV is positive, then the actual cost of the work performed was

less than was budgeted (there’s an urban legend that this has actually happened

once, but we don’t put much credence in it). Typically, managers are looking for

a CV as close to zero as possible. For even if the actual cost is less than the

budgeted cost, it means the estimates were wrong, making the rest of the

budgeted work suspect.

7. SV: Schedule Variance. SV = BCWP − BCWS. Since both BCWP and BCWS

represent the same time period, a negative SV means there is still work left to do

that was not accomplished during the time period, which will take more time

(i.e., schedule) to work off the remaining tasks. Again, the goal is for SV to be

as close to zero as possible [2]. And while it is possible for SV to be positive,

which means there was more progress during the time period than was scheduled,

this too is the stuff of Earned Value folklore.

8. VAC: Variance at Completion. VAC = BAC − EAC. This represents the

complete variance for the program/project at the conclusion. Again, the goal is

to have VAC as close to zero as possible, for if VAC is large positive, then the

program/ project was grossly over-budgeted, while a VAC that is large negative

indicates a grossly under-budgeted program/project. Both are hazardous because

it calls into question the company’s budgeting practices.

If you read through metrics 1–8, they seem like reasonable measures of a

program/project. However, the issues with classical Earned Value are that the entire

program/project must be planned out in detail, often down to 2–4 week tasks, and

detailed budgets put in place for the program/project schedule. Any variances from

this budget or schedule are considered problems (variances) and variance reports

must be written and explained; in short, in classical Earned Value change is bad and

uncertainty is worse [3]. In fact, the concepts of classical Earned Value can be

broken down into seven major precepts:

1. Plan all work to completion.

2. Break down the work scope into finite pieces assigned to responsible persons for

control of technical, cost, and schedule objectives.

3. Integrate work scope, cost, and schedule objectives into a performance baseline

to measure progress against. Control changes to the baseline.

4. Use actual costs incurred and recorded in accomplishing the work performed.

5. Objectively assess accomplishments at the work performance level.

6. Analyze variances from the plan, forecast impacts, and prepare an EAC based

on current performance.

5.2 Assessing Agile Development: Agile EVMS 55

7. Use Earned Value metrics to assess management processes.

In short, plan every detail of the project, including the work to be performed at

every small increment, and create a detailed and complete schedule and budget

across the entire project. Manage change carefully, for change is the hobgoblin of

Earned Value. In classical waterfall development, working software is delivered at

major milestones.

Now let us bounce the precepts of classical Earned Value against the precepts of

agile software development to see if there may be some issues.

1. The emphasis is on early and continuously working software deliveries at the

end of each of the Sprints.

2. Constant customer interaction and collaboration that includes welcoming

changes to requirements. This allows the customer to adapt to changing

environment and user needs to create products and services that are considered

viable by the end users.

3. Business development, management, customers, and developers MUST work

together throughout the project.

4. Sprints teams should be staffed with motivated individuals who are trained in

both agile development and agile team dynamics.

5. Management needs to create an effective team environment and support the

teams by being a facilitator and trusting the teams to develop the required

software.

6. The most efficient and effective method of cooperation and collaboration

within an agile development team is face-to-face conversation—even if it is

over a Video Teleconference (VTC).

7. Working software and team/software entropy are the primary metrics.

8. Agile development processes promote sustainable development.

9. Continuous attention to technical excellence and good design enhances agility

and promotes healthy cost and schedule metrics.

10. Simplicity is essential in agile development—work for work sake has no place

in agile programs/projects.

11. The best architectures, requirements, and designs emerge from well-trained,

self-organizing teams.

12. Teams must reflect at regular intervals (Sprint introspectives) on how to

become more effective. The team must then tune and adjust its behavior

accordingly.

5.2 Assessing Agile Development: Agile EVMS 56

5.2.1 Disconnects Between Classical EVMS

and Agile Development

The notion of detailed planning of every task in the program/project across the entire

schedule and striving to control and drive down changes is completely antithetic to

the precepts of agile software development. In agile development, change is

welcomed throughout the project. The entire reason agile development was
Table 5.1 Classical vs. agile EVMS concepts

Classical EVMS Concepts for Agile EVMS

Plan all work to completion of the

program/project.
Create capabilities backlog and loosely plan across

Sprints.

Break down work scope into finite

pieces assigned to responsible person(s)

who control technical, cost, and

schedule objectives.

Work is assigned to Sprint teams who control

technical content of the Sprint backlogs.

Integrate work scope, cost, and

schedule into a performance/program

baseline. Control changes to baseline.

Create program/project backlog burndown plan,

assigning capabilities across Sprints and teams.

Results of demonstrable software at the end of each

Sprint define how requirements/capabilities change

across the program/project.

Use actual costs incurred and recorded in

accomplishing the work performed.
Agile teams assess performance characteristics of the

teams and tune the teams’ needs and performance to

improve over time, throughout the entire agile

development cycle.

Objectively assess accomplishments

at the work performance level.
Assess accomplishment by continuously integrated

working software.

Analyze variances from the plan,

forecast impacts, and prepare EAC,

based on current performance.

Analyze, based on working software, new or changes

in requirements for future Sprints. Assess efficiency

and effectiveness, which includes volatility of teams

and software, based on entropy measures.

Use Earned Value metrics to assess

management process.
Use Agile Earned Value metrics to assess

effectiveness of both management and Sprint teams.

created was to deal with the reality that requirements and necessary capabilities

change over time, especially for a project that spans years. In today’s environment

where technology and customer, geopolitical, and cultural needs change rapidly, the

need for embracing agile will only increase over time. The successful companies

are those that not only embrace the mechanics of agile development, but are those

that understand the need for management and developers with the nontechnical

skills (soft people skills) necessary to empower and facilitate efficient and

motivated agile development Sprint teams. One of the most important things to

understand in today’s environments is that it is possible to come in completely on

budget and on schedule and yet the project fail because the program/project

development did not adapt to changing customer needs. If no one wants the product

once it’s completed, it was not a success. Likewise, if the program/project comes in

5.2 Assessing Agile Development: Agile EVMS 57

on schedule and on budget and meets customer needs, but your developers never

want to work on a program/project with that manager ever again, the

program/project failed. Table 5.1 illustrates classical EVMS versus the concepts for

Agile EVMS.

Next we will discuss factors that often derail the use of EVMS on Agile

programs/projects, and then Sect. 5.3 will introduce new EVMS assessment

concepts, ones that are more adaptable and useable to assess agile development: the

Agile Earned Value Management System (AEVMS).

5.2.2 Factors That Can Derail Agile EVMS

There are very many factors that can derail agile development teams and lead them

to failure; the most prevalent are those revolving around a lack of management

commitment and training in how to manage an agile program/project (i.e., how to

be an agile manager). Even more issues arrive when managers must embrace a new

paradigm of how to measure agile programs/projects, or how to use Agile Earned

Value. What follows is a discussion of the factors that can most easily derail an agile

development project, from an Agile EVMS perspective:

1. Lack of accountability: This pertains both to the members of the agile

development teams and the agile manager. Many managers may feel like they

have nothing to do, given the autonomy and control that the agile team need to

have over the development efforts. In this case, the manager may feel like they

are no longer accountable for the project, and therefore will not facilitate the

agile teams, becoming apathetic toward the entire process. In this case, the

program/project has very little chance of being successful. If the teams are not

chosen well, some team members may feel like they are not individually

accountable and that it’s the teams’ responsibility, not theirs, to make sure things

work well. Individual accountability to the teams is crucial to the overall success

of agile development.

2. Lack of commitment to Agile (holding on to classical EVMS): The manager that

insists on using classical waterfall development Earned Value and management

techniques on an agile development effort will not only be unsuccessful, but the

manager will be very frustrated throughout the entire effort. However, this

requires commitment from upper management to provide the proper

management training on agile projects.

3. Poorly trained teams: Just being efficient at writing software and being adaptable

to changes doesn’t mean agile teams are successful. Agile development Sprint

teams need to be trained in how to collaborate effectively and how to deal with

generational, cultural, and other differences that can cause mistrust among team

members. Understanding the teams personalities can go a long way toward the

teams self-organizing in a way that allows the team to be effective across

multiple Sprints and multiple programs/projects.

5.2 Assessing Agile Development: Agile EVMS 58

4. Poor documentation: Many developers feel that agile gives them the freedom to

not worry about documentation: that documentation gets in the way of their

freedom to self-organize and adapt. However, the right amount of documentation

is essential in order for the team members and teams to understand the end goals,

and to understand what each other is currently developing, how it fits into the

Sprint, and how the Sprints will integrate together to form working software at

the end of each Sprint.

5. Using unproven collaboration/automation tools: As we have discussed,

providing productivity tools to the teams is necessary to keep the individual

developers and the Sprint teams running at peak efficiency and can promote

collaboration. However, introducing new tools into the teams during a

development effort may completely disrupt the rhythm of the agile development

process while each team member comes up to speed on the tools and how to use

them effectively. In addition, if it turns out the tool is not appropriate for the

teams, additional efficiencies will be lost when teams and individuals try to re-

adopt previous tools.

6. Inaccurate data: It is vitally important that the Agile Manager gather accurate

data concerning the productivity and effectivity of the teams across Sprints.

Retrospectives are difficult if the teams are not provided accurate information.

7. Manager holding everything at their level (failure to communicate issues to the

teams): While inaccurate data causes incorrect decisions to be made among the

teams and between the teams, the lack of information is more devastating to

effective agile development efforts. There must be complete transparency

between the Agile Manager and the teams, the Agile Manager and individual

developers, and between Sprint teams. The adaptivity the agile development

process promises is only achievable if there is effective communications all

throughout the program/project.

5.2.3 Agile EVMS Metrics

In his paper on Assessing Agility [39], Lappo asserts that classical metrics are not

much use for assessing agility. He goes on to explain that the use of metrics like

Software Lines of Code (SLOC), function points, or quality metrics is not an

effective measure of agile development, and assessments made should be made in

terms of how the software, as well as the software development process, is effective

in meeting the needs of the program/project, the customer, the end users, and the

overall companies’ business goals and visions.

This does not mean that these metrics are not useful throughout the program/

project to help with the overall agile development efforts. For instance, complexity

measures are useful in determining which capabilities from the backlog are

scheduled in a given Sprint, and are useful in determining how to “swap out” one

5.2 Assessing Agile Development: Agile EVMS 59

set of capabilities for another when it is determined that a set of capabilities must be

moved forward or moved out within the overall Sprint development schedule.

However, complexity measures tell very little about the maintainability of the code:

how easy is it to adapt the code for other purposes (i.e., how agile is the code). Some

very complex code may be written in a way that is easy to understand and structured

in such a way that it fits easily into the agile development style. At the same time

some very simple code can be written in such a convoluted way that it is almost

impossible to understand, modify, or maintain. Lappo’s view [39] is that these

lowlevel measures don’t measure or provide insight into higher-level effectiveness

and efficiency measures of the overall program/project’s agile process.

Agile Earned Value metrics must take into account the entire agile development

life cycle, which includes assessments of the software, the program/project agile

process, the environment that has been created for the developers and development

(Sprint) teams, as well as assessment of the tools utilized in the agile development

process.

In order to effectively measure agile development in terms of Earned Value one

must take into all of these factors, for each of them drives cost, schedule, and quality

across the entire agile development program/project. Assessing software in terms of

complexity may not provide a high-level view of overall program effectiveness, but

according to Abran [2], it is an essential characteristic of the agile software process

and product and should be measured. According to Carbone [15], capturing and

utilizing context in such measurements is essential to capture the overall measure of

complexity. Software complexity, combined with context, allows the Agile

Manager to measure the computational, structural, functional, and representational

complexity of the software throughout the agile development life cycle. Abran [2]

explains that measuring computational complexity (CC) provides classical Earned

Value measurements of CV and SV, as it quantifies the time and resources required

to write and test the software. This may be measured in terms of algorithmic

efficiency of the software, coupled with the efficiency measure of each Sprint.

Looking at the integrated, working software at the end of each Sprint from high-

level dynamic event traces that are required to achieve the functional requirements

of the system allows measurement of the functional complexity (FC).

Representational complexity (RC) is measured from systems architecture

(DoDAF 3) perspective, looking at the graphical and textual notations for

representations of the System Model (SV-1), System Interactions (SV-3), and

System Behaviors (SV-4). Based on a measure from zero to one, the overall Sprint

Complexity Factor (SCF) for a given team for a given Sprint is:

 SCF = CC ´ FC ´ RC

3 Department of Defense Architecture Framework.

5.2 Assessing Agile Development: Agile EVMS 60

and the overall agile cost and schedule metrics, Agile Cost Variance (ACV), and

Agile Schedule Variance (ASV) become:

ACV = CV ´ SCF

 ASV = SV ´ SCF

The overall Agile Effectiveness (AE) of a given Sprint for n number of Sprint

teams is:

n

AE =åACVi ´ ASVi

 i=1

The Cumulative Agile Earned Value (CAEV) effectiveness measure, across m

number or Sprints, then becomes:

 m n

CAEV -ååACVi j, ´ ASVi j,

 j= =1 i 1

The next section described another important measure of agile software that must

be taken into account in measuring Earned Value for agile development

programs/projects, and that is Entropy. While some changes are embraced by the

agile design methodology, it is important to measure those phenomena that drive

uncertainty into agile development and are indicators of impending problems within

the overall development rhythms of the agile program/project. We will discuss two

of these in the next section:

1. Volatility in Sprint team membership: As was discussed earlier, it is important

to keep the Sprint teams as stable as possible across the development program/

project in order to keep a stable and sustainable development rhythm.

2. Volatility or velocity of increase/decrease of Sprint software defects. As the

Sprint teams work together, get used to each other, understand each other’s

strengths and expertise, and as they gain experience writing software for this

project, one would expect the number of defects across each Sprint to decrease.

One way to measure this is with Entropy or the measure of change across Sprints.

5.3 Entropy as an Earned Value Metric for Agile Development

Entropy is a concept in information theory proposed by Shannon [67], and

generalized by Rényi [9]. Entropy is used in information theory to provide a

quantitative measure of uncertainty in systems random variables. A simple way to

5.2 Assessing Agile Development: Agile EVMS 61

describe the use of Entropy is to say that the more uncertainty there is in a given

system, the more potential there is for volatility within the system. This is exactly

the case we have with agile development programs/projects. However, the

uncertainty here is not the uncertainty of requirements change, but the uncertainty

of increase in Entropy of certain factors that drive the efficiency of agile

development teams [32]. In particular we are talking about the uncertainty of teams

(moving people between teams or brining new people into teams) and the

uncertainty that can be measured in the software defect volatility.

5.3.1 Entropy Measures

The measurement of Entropy is based on the uncertainty associated with random

variables. And while you might think that this does not apply to agile development

teams, the following discussion may change your mind.

At the beginning of an agile development project, it is not possible to determine

how many times an Agile Manager may change out team members, either because

they choose to or because a team member leaves the company or the

program/project. Therefore, we can think of the volatility of team membership as a

random variable, X. Also, it is not possible to determine the number of software

defects that will be created through software development across the teams and

Sprints. Attempts are made to make predictions, but these also are treated as random

variables and attempts are made to predict the average number of defects and the

“bounds” on defects.

 62
5.3 Entropy as an Earned Value Metric for Agile Development

Again, we will call the number of defects random variable, Y. Given a random

variable X, with probability distribution P, Shannon’s Entropy calculation is

computed from the following:

 H X()=ån p x()i I x()i =ån p x()i log2 ()1 =-ån p x()i log2 p()xi

 i=1 i=1 p xi i=1

where p(xi) represents the point probability at time i. The next two sections will

explore the use of Entropy to measure uncertainty within an agile development

project and how to utilize this in the overall Agile Earned Value metrics.

5.3.2 Volatility of Teams

Earlier, we discussed the problems associated with changing out Sprint team

members during the agile development program/project. This volatility of team

members disrupts the agile development process and introduces uncertainty (or

entropy) into the development efforts. In order to adequately measure the

effectiveness and productivity of agile development, the Entropy of Team Volatility

(ETV) must be a factor in the Agile Earned Value metrics. We will let X be a random

variable that describes the probability of a change in team members across one or

more agile teams, where the probability of team member volatility increases with

the number of people in each team and increases with the number of teams. As the

team size and the number of teams increase the probability of a change of one or

more personnel increases also. We will assign an exponential random variable to

the probability that there will be personnel changes, given a number of teams and

number of personnel/ team. Also, since removing a team member means adding a

new team member, and changing out personnel from teams means moving at least

two people (or an even number of personnel), for n number of changes there are 2n

people changed. Therefore the uncertainty (or entropy) equation becomes: p

X()=le-lX ,

where X = ln
æ

çån size(teami

)ö
÷, n = # of teams.

 è i=1 ø

For example we will let λ = 0.5. Cumulative Density Function for X is 1 − λe−
λ
X

and looks like in Fig. 5.4.

 63

For instance, if there are six Sprint teams, each with eight people, then the

probability of a change occurring within the team structure is:

 p(change)= -1 0.5e-0 5. ln(48) = 0.97

This says it is 97 % likely that there will need to be a change across the teams at

least once in the agile development cycle for the program/project.
Cumulative Density Function for Agile Team Volatility

Fig. 5.4 Cumulative density function for agile team volatility

If we let the agile development project be comprised of five agile teams and eight

developers/team, and if there are three personnel moves, which constitutes six

changes, then the entropy factor caused by these changes is p(X) = 0.079, and the

Entropy caused by this is 0.29, or there is an estimated 29 % degradation to future

Agile Earned Value due to the Entropy introduced by three personnel moves.

Therefore, the Agile Earned Value metrics must be reduced by 29 %: new Agile

Earned Value = Measured Agile Earned Value × 0.71. This is a significant amount,

but should be taken into account to have more accurate Agile Earned Value Metrics,

and allows the Agile Manager to keep track of potential issues that they may

introduce by changing out personnel throughout the program/project agile

development cycle.

1

0.95

0.85

0.75

0.65

0.55

0.9

0.8

0.7

0.6

0.5
0 1 3 2 4 5 0.5 1.5 2.5

In(sum(team sizes))
3.5 4.5

 64

5.3.3 Volatility of Software Defects

Volatility of software defects is a measure of whether the software defects are

decreasing over time, given that over time, the developers become more familiar

with the overall system being developed and how all the services play together, and

become more comfortable with the teams and team environment. For a given set of

capabilities within each successive Sprint, if the complexity between the Sprints is

normalized, one would expect the software defects to be decreasing. An increase in

the normalized software defects over successive Sprints is increasing; this indicates
5.3 Entropy as an Earned Value Metric for Agile Development

volatility or Entropy in the development process and must be measured and

remedies determined and put into place across the Sprint teams.

The Software Defect Entropy is determined and measured, based on the first

Sprint, setting the complexity factor for the first Sprint equal to 1. Then the

complexity of each successive Sprint is measured against the first Sprint and a

complexity factor determined. Based on the software defects Sprint 1, the Software

Defect Factor for Sprint i is:

SDF1 = #defects1 SDFi = #defectsi ´normalized complexity

factori ,i >1

If SDFi+1 > SDFi it indicates Entropy has been introduced into the software

development process and the causes must be determined and adjudicated in order to

get the agile development effort back on track. The total Software Defect Entropy

(SDE) across the agile development project is then measured, where we compute

the change in normalized defects/Sprint team across each Sprint, or:

m n SDE

=ååSDFi j, ,

 i= =1 j 1 where m = #Sprints and n = #teams.

Adjusting Earned Value metrics for agile development will be a long paradigm

shifting exercise for managers and may take time to get the Agile Manager to use

different types of metrics and measures than they have been used to. The emphasis

with agile development needs to be on measuring the agile process, and results

(working code), not antiquated measures like SLOC. Only when we embrace

measures that are effective for agile development will the Agile Manager be able to

truly understand the dynamics and issues with their agile development

programs/projects.

Having dealt with most of the issues surrounding the management of agile

development, we move on to a subject that has been getting much more visibility in

 66

the last few years, and that is the subject of inclusiveness and diversity as part of the

overall team dynamics for agile development.

Chapter 6

 Conclusion: Modern Design Methodologies—

Information and Knowledge Management

One of the things that must be understood by leadership and management in the

future is that just because you deliver a product on time and on budget doesn’t mean

the project was an overall success. Delivering a product on budget and on schedule

but decimating a development team is not, in the long run, a success for the

company. Managers and Leaders must understand all aspects of development teams

for longterm success. And while some managers may wonder if they have a role in

the new agile development paradigm, the Agile Manager understands that their role

is more important than ever to the overall success of the agile development

program/project. The Agile Manager must split their time between facilitating each

Sprint team to allow them to be as effi cient and effective as possible, keeping track

of agile productivity metrics, and keeping open and active collaboration and

cooperation with the customer in terms of reviewing working software at the end of

each Sprint and helping to shape the requirements, capabilities, and needs going

forward. These are three paradigm domains that must be attended to by the Agile

Manager in order to keep the agile development rhythms sustained throughout the

agile development life cycle. A lack of commitment to any of these Agile

Management domains or treating any one of them in isolation may result in

ineffective Sprint development teams.

I t is important for the Agile Manager to realize that quality software is not

achieved through reacting to software failures during integration and test; instead,

it is achieved through the time and desire on the part of the entire development team

and the Agile Manager to produce a quality product. Both the developers and the

Agile Manager must work together to create a cohesive program/project

development team that works collaboratively within the Sprint teams, cooperatively

across Sprint teams, and working in tandem with the Agile Manager, bringing issues

up early to allow the Agile Manager to remove roadblocks from effi cient

development.

F or the Agile Manager, in order to keep a working team it is important to utilize

soft people skills as well as standard agile management skills. This includes

understanding how to facilitate inclusion of cultural diversity, minimize judgment

of people, and focus on expertise. The manager needs to have an understanding of

© Springer International Publishing Switzerland 2015 65
J.A. Crowder, S. Friess, Agile Project Management: Managing for Success,
DOI 10.1007/978-3-319-09018-4_6
 6 Conclusion: Modern Design Methodologies…

Locus-of-Control so that the team feels accountable individually and to the team,

such that each member feels a sense of agency. The manager works toward

empowerment of all individuals on the team. Each member has a voice and is heard.

Without the facilitator, team dynamics can easily be taken over by those who have

a strong voice yet lack expertise of other members of the team. This is a side-by-

side development style versus a completive individualistic style. Save the

competition for the team as a whole and the end product.

I n addition, embracing new productivity tools and new agile metrics (Agile

Earned Value) will allow the Agile Manager to manage the diversity of information,

lessons learned, etc. that results from the agile development process. The real

question for the Agile Manager is: will they release control to the agile development

teams? If the manager insists on holding on to old ways of managing, ineffective

metrics that are antithetic to agile development, and will not allow empowerment

within the teams, it is diffi cult to envision a truly successful agile development p

rogram/project. In the end, this paradigm shift will be borne out of economic

necessity as companies lose their competitive edge to companies that will embrace

the new paradigm of agile development, and Agile Managers embrace their new,

important roles, facilitating effi cient, effective, and robust agile development

teams. In the end, the true Agile Manager will be those managers for whom these

concepts become intuitive and not forced. We all understand that change is hard and

many people don’t deal well with change, but change will happen with or without

the reluctant manager.

References

1 . A bba W. How earned value got to prime time: a short look back and a glance ahead. PMI

College of Performance Management; 2000 (www.pmi-cpm.org).
2 . Abran A, Ormandjieva O, Abu Talib M. Information-theory-based functional complexity

measures and function size with COSMIC-FFP. Montreal: Université du Québec à Montréal;

2001.
3 . A lleman G. Herding Cats: issues with deploying earned value management; 2012. Available

from http://zo-d.com/blog/archives/project-management-on-the-web/-pm-web-001-glen-b-

allemans-herding-cats.html
4 . Allen B. Diversity and organizational communication. J Appl Commun Res. 1995;23:143–55.
5. Astin H, Leland C. Women of infl uence, women of vision: a cross-generational study of

leaders and social change. San Francisco, CA: Jossey-Bass; 1991.
6. Bandura A. Self-effi cacy: the exercise of control. New York: W. H. Freeman; 1997.
7. Barnes K. Applying self-effi cacy theory to counselor training and supervision: a comparison

of two approaches. Counsel Educ Supervision. 2004;44(1):56–69.
8. Beck K. Extreme programming explained - embrace change. Boston, MA: AddisonWesley;

1999.
9 . Beck C, Friedrich A. Thermodynamics of chaotic systems: an introduction. Cambridge:

Cambridge University Press; 1993. ISBN 0521433673.
10. Becker J, Kovach A, Gronseth D. Individual empowerment: how community health workers

operationalize self-determination, self-suffi ciency, and decision-making abilities of low-

income mothers. J Commun Psychol. 2004;32(3):327–42.
11. Black L, Magnuson S. Women of spirit: leaders in the counseling profession. J Counsel Dev.

2005;83(3):337–42.
12. Bollen K. Indictor: Methodology. In: Smelser N, Baltes P, editors. International encyclopedia

of the social and behavioral sciences. Oxford: Elsevier Science; 2001. p. 7282–87.
13. Booch G. Object solutions: managing the object-oriented project. Upper Saddle River, NJ:

Pearson Education; 1995. ISBN 0-8053-0594-7.
14. Brooks F. The mythical man-month. Boston, MA: Addison-Wessley; 1975. ISBN 0-201-

00650-2.
15. Campbell J, Trapnell P, Heine S, Katz E, Lavallee L, Lehman D. Self-concept clarity:

measurement, personality correlates, and cultural boundaries. J Personal Soc Psychol.

1996;70: 141–56.
16. Carless S. Does psychological empowerment mediate the relationship between psychological

climate and job satisfaction? J Bus Psychol. 2004;18(4):405–25.
17. C rawford A. Empowerment and organizational climate: an investigation mediating effects on

the core self-evaluation, job satisfaction, and organizational commitment relationship.

ProQuest Dissertations and Theses; 2008. p. 147.

http://www.pmi-cpm.org/
http://www.pmi-cpm.org/
http://zo-d.com/blog/archives/project-management-on-the-web/-pm-web-001-glen-b-allemans-herding-cats.html
http://zo-d.com/blog/archives/project-management-on-the-web/-pm-web-001-glen-b-allemans-herding-cats.html
http://zo-d.com/blog/archives/project-management-on-the-web/-pm-web-001-glen-b-allemans-herding-cats.html

© Springer International Publishing Switzerland 2015 67
J.A. Crowder, S. Friess, Agile Project Management: Managing for Success,
DOI 10.1007/978-3-319-09018-4

References

18. C rowder JA, Carbone J. Recombinant knowledge relativity threads for contextual knowledge

storage. Proceedings of the International Conference on Artifi cial Intelligence; 2011; Las

Vegas.
19. Crowder J, Friess S. Systems engineering agile design methodologies. New York, NY:

Springer; 2013. ISBN 1461466628.
20. Csikszentmihalyi M. Good business: leadership, fl ow, and the making of meaning. New York,

NY: Penguin Group; 2003.
21. Defense Systems Management College. Earned value management textbook, Chapter 2. Fort

Belvoir, VA: Defense Systems Management College; 1997.
22. Deming W. Out of the crisis. Cambridge, MA: Massachusetts Institute of Technology; 1986.
23. Dirks K, Ferrin D. Trust in leadership: meta-analytic fi ndings and implications for research

and practice. J Appl Psychol. 2002;87:611–28.
24. Eysenck H, Eysenck S. Personality structure and measurement. San Diego, CA: Robert

R. Knapp; 1969.
25. Fleming Q, Koppelman J. Earned value project management. 3rd ed. Newton Square, PA:

Project Management Institute; 2005. ISBN 1-930699-89-1.
26. Francisco M, Holcombe M, Gheorghe M. A formal experiment comparing extreme program-

ming with traditional software construction. Proceedings of the Fourth Mexican International

Conference on Computer Science; 2003.
27. Freeman S, Bourque C, Shelton C, editors. Women on power: leadership redefi ned. Boston,

MA: Northeastern University Press; 2001. p. 3–24.
28. Frieze C, Blum L. Building an effective computer science student organization: the Carnegie

Mellon Women@SCS Action Plan. Inroads SIGSCE Bull Women Comput. 2002;34(3):74–

8.
29. Gardner W, Avolio B, Luthans F, May D, Walumbwa F. Can you see the real me? A self-

based model of authentic leader and follower development. Leadersh Q. 2005;16:343–72.
30. Glib T. Evolutionary project management; 2013. Available from http://ebookbrowsee.net/

document-evoprojectmanagement-pdf-d357611912
31. Goodpasture J. Quantitative methods in project management. Plantation, FL: J. Ross; 2004. p.

173–8. ISBN 1-932159-15-0.
32. Harrison W. An entropy-based measure of software complexity. IEEE Trans Software Eng.

2000;18(11):1025–9.
33. Harter S. Authenticity. In: Snyder CR, Lopez S, editors. Handbook of positive psychology.

Oxford: Oxford University Press; 2002. p. 382–94.
34. Harter J, Schmidt F, Hayes T. Business-unit level relationship between employee satisfaction,

employee engagement, and business outcomes: a meta-analysis. J Appl Psychol. 2002;87(2):

268–79.
35. Harvey C, Allard J. Understanding and managing diversity. 5th ed. Upper Saddle River, NJ:

Pearson Education; 2012. ISBN 0-13-255311-2.
36. Hazzen O, Dubinsky Y. Empower gender diversity with agile software development. In:

Trauth EM, editor. The encyclopedia of gender information and information technology.

Hershey, PA: IGI Global; 2006. p. 249–56.
37. Highsmith J. Agile software developments ecosystems. Reading, MA: Addison-Wesley;

2002.
38. Hofstede G, Hofstede GJ, Minkov M. Cultures and organizations: software of the mind. New

York, NY: McGraw-Hill; 2010.
39. I SO/IEC 19761. Software engineering – COSMIC-FFP-A functional size measurement

method. International Organization of Standardization – ISO; 2003; Geneva, Switzerland.

http://ebookbrowsee.net/document-evoprojectmanagement-pdf-d357611912
http://ebookbrowsee.net/document-evoprojectmanagement-pdf-d357611912
http://ebookbrowsee.net/document-evoprojectmanagement-pdf-d357611912
http://ebookbrowsee.net/document-evoprojectmanagement-pdf-d357611912

40. Iyengar P. Application development is more global than ever, Publication G00124025.

Stamford, CT: Gartner; 2004.
41. Jacobsen I. Object-oriented software engineering: a use case driven approach. Boston, MA:

Addison-Wesley; 1992. ISBN 0-201-42289-1.
42. Jeffries R, Anderson A, Hendrickson C. Extreme programming installed. Boston, MA:

Addison-Wesley; 2001.
43. Jewson N, Mason D. The theory of equal opportunity policies: liberal and radical approaches.

Sociol Rev. 1986;34(2):307–34.
References 69

44. Jha SS, Nair SK. Infl uence of locus of control, job characteristics and superior-subordinate

relationship on psychological empowerment: a study in fi ve star hotels. J Manag Res.

2008;8(3):147–61.
45. Judge TA, Erez A, Bono JE, Thoresen CJ. Are measures of self-esteem, neuroticism, locus of

control, and generalized self-effi cacy indicators of a common core construct? J Personal Soc

Psychol. 2002;83(3):693–710.
46. Kanter RM. The change masters: innovation for productivity in the American Corporation.

New York, NY: Simon and Schuster; 1983.
47. Kanter RM. The challenges of organizational change. New York, NY: Simon and Schuster;

1992.
48. K arlesky M, Williams G, Bereze W, Fletcher M. Mocking the embedded world: test-driven

development, continuous integration, and design patterns. Processings of the Embedded

Systems Conference Silicon Value; 2007; San Jose, CA.
49. Kernis MH. Toward a conceptualization of optimal self-esteem. Psychol Inq. 2003;14:1–26.
50. Kurian T. Agility metrics: a quantitative, fuzzy-based approach for measuring agility of a soft-

ware process. ISAM-Proceedings for the International Conference on Agile Manufacturing’06

(ICAM-2006); 2006; Norfolk, VA.
51. Lappo P, Andrew H. Assessing agility. In: Extreme programming and agile processes in

software engineering, Lecture Notes in Computer Science, vol. 3092. Heidelberg: Springer;

2004. p. 331–8.
52. Larson R, Walker K, Pearce N. A comparison of youth-driven and adult-driven youth

programs: balancing inputs from youth and adults. J Commun Psychol. 2005;33(1):57–74.
53. Lee L. The empowerment approach to social work practice. New York: Columbia University

Press; 1994.
54. Mann HH. Empowerment in terms of theoretical perspectives: exploring a typology of the

process and components across disciplines. J Commun Psychol. 2006;34(5):523.
55. Marshall R. The contribution of earned value management to project success of contracted

efforts. J Contract Manag. 2007;Summer:21–33.
56. Nichols JD. Empowerment and relationships: a classroom model to enhance student

motivation. Learn Environ Res. 2006;9(2):149–61.
57. N oll J, Atkinson D. Comparing extreme programming to traditional development for student

projects: a case study. Proceedings of the 4th International Conference of Extreme

Programming and Agile Processes in Software Engineering; 2003.
58. Page N, Czuba CE. Empowerment: what is it? J Extens. 1999;37(5).
59. Peters J, Pedrycx W. Software measures in software engineering: an engineering approach.

New York, NY: Wiley; 2000.
60. P iotrowski CL. Quantum empowerment: a grounded theory for the realization of human

potential (Order No. 3240834, Cardinal Stritch University). ProQuest Dissertations and

Theses; 2006. p. 358.
61. P isano N. Technical performance measurement, earned value, and risk management: an

integrated diagnostic tool for program management. Defense Acquisition University

Acquisition Research Symposium; 1999.

62. Roope K. Effi cient authoring of software documentation using RaPiD7. ICSE, 25th

International Conference on Software Engineering (ICSE’03); 2003, p. 255.
63. Rotter J. Generalized expectancies for internal versus external control of reinforcement.

Psychol Monogr. 1966;80(1):1–28.
64. Rumbaugh J, Blaha M, Premerlani W, Eddy F, Lorensen W. Object-oriented modeling and

design. Upper Saddle River, NJ: Prentice Hall; 1990. ISBN 0-13-629842-9.
65. Schulze W, Gerking S, De Haan M. How earned value management is limited. J Risk

Uncertainty. 2010;1(2):185–99.
66. S chwaber K. The scrum development process. Processings of the OOPSLA’95 Workshop on

Business Object Design and Implementation; 1995.
67. Shannon C. The mathematical theory of communication. Urbana, IL: University of Illinois

Press; 1969.
References

68. Skinner EA. A guide to constructs of control. J Personal Soc Psychol. 1996;71(3):549–70.
69. Speer PW. Intrapersonal and interactional empowerment: implication for theory. J Commun

Psychol. 2000;20(1):51–61.
70. Spreitzer GM. Psychological empowerment in the workplace: dimensions, measurement and

validation. Acad Manag J. 1995;38(5):1442–65.
71. Stanhope DS, Samuel B, Surface EA. Core self-evaluations and training effectiveness:

prediction through motivational intervening mechanisms. J Appl Psychol. 2013;98(5):820–

31.
72. S ulaiman T, Barton B, Blackburn T. Earned value management the agile way. Proceedings

of the AGILE Conference; 2007. p. 10.
73. Sumara J, Goodpasture J. Everything you wanted to know about time-centric earned value.

PM Network. 2000;14:51–4.
74. Thomas K, Velthouse B. Cognitive elements of empowerment. Acad Manag Rev.

1990;15:666–81.
75. Tom G. Principles of software engineering management. Boston, MA: Addison-Wesley;

1998. p. 133–58.
76. Walck C. Diverse approaches to managing diversity. J Appl Behav Sci. 1995;31:119–23.
77. Wienberg G. Iterative and incremental development: a brief history. Computer. 2003;36(6):

47–56.
78. Williams L, Succi G, Stefonovic J, Marchesi M. A metric suite for evaluating the effectiveness

of an agile methodology. In: Marchesi M, Succi G, Wells D, Williams L, editors. Extreme

programming perspectives. Boston, MA: Addison-Wesley; 2003.
79. Botella L. Personal construct theory, constructivism, and postmodern thought. In: Neimeyer

RA, Neimeyer J, editors. Advances in personal construct psychology, vol. 3. Greenwich, CT:

JAI Press; 1995. p. 3–35.

Index

A
Agile cost variance (ACV) , 59
Agile development paradigm , 1, 8, 37, 65

process , 1, 3, 6, 8, 9, 11, 12, 16, 19,

22,
24, 25, 29, 31, 32, 34, 43, 48, 55, 58,
61, 66 team , 1–3, 8, 9, 11–13, 15, 18,

21–23, 25,
30, 32–41, 43, 45, 46, 52, 55, 57, 60, 66

Agile earned value , 52, 56–58, 61, 62, 66
Agile Earned Value Management System

(AEVMS) , 56
Agile manager(s) , 1–8, 10, 12–15, 20–25, 27,

30–32, 34–41, 43–47, 51, 52, 57–60,
62, 63, 65, 66

Agile schedule variance (ASV) , 59
Agile software development , 1, 3, 6, 7, 17, 19,

25, 34, 38, 44, 48, 51, 52, 55

Analytical thinker , 12
Automation , 46, 47, 57–58

B
Backlog , 30, 32, 43, 44, 51, 52, 56, 58
Brain-storming , 31, 37, 45
Budget at completion (BAC) , 53, 54
Budgeted cost of work scheduled

(BCWS) , 53, 54

C
Collaboration tools , 8, 43, 45, 57–58
Commercial Off-the-Shelf (COTS) , 44, 45, 50
Cost Performance Index (CPI) , 52
Cost variance , 54, 59

Culturally diverse , 3, 7, 27, 39

D
Department of Defense (DoD) , 5, 50, 59
Development rhythm , 16, 22, 31, 60, 65
Diversity , 2, 7, 8, 23, 30, 34, 36, 38–41, 63,

65, 66

E
Earned Value, 1, 46, 48–50, 52–55, 57, 59, 62,

66
Earned Value Management System (EVMS) ,

8, 48–57
Earned Value metrics , 50, 52, 54, 56, 58, 60–

63
Effi ciencies , 10, 11, 14, 15, 17, 20, 23, 33,

38–40, 45, 46, 48, 56–60
Electronic , 45, 47, 48
Empowerment , 3, 13–20, 22, 30, 34, 37, 66
Engineering Notebook , 47, 48
Entropy , 20–22, 55, 56, 59–63
Equivalent Software Lines of Code

(ESLOC), 1
Estimate at completion (EAC) , 27, 54, 56
Estimate to Complete (ETC) , 27, 52, 54
EVMS. See Earned Value Management

System (EVMS)

F
Facilitating , 32, 65, 66
Feedback , 14, 17, 29, 30

Free-form thinking , 37
I
Impediments to progress , 32
Independence , 12–17, 21
Ineffective , 65, 66
Innovation , 39, 41, 46 Introspectives

, 55

L
Life-cycle cost , 9
Locus of control , 3, 15, 17–20, 33, 37, 41, 66

M
Metrics , 3, 10, 40, 44, 52–55, 58–60, 63, 66

Milestones , 49, 55

© Springer International Publishing Switzerland 2015 71
J.A. Crowder, S. Friess, Agile Project Management: Managing for Success,
DOI 10.1007/978-3-319-09018-4

P
Productivity metrics , 9 tools ,

8, 41, 43–48, 57, 66

R
Requirements , 1, 6, 8, 9, 14, 17, 25, 27,

29, 34, 37, 43, 46, 47, 49, 50, 52,
55, 56, 59, 60, 65

Retrospectives , 30, 37, 40, 43, 44, 58
Robust , 66

Index

S
Schedule Performance Index (SPI) , 52
Schedule variance , 54, 59
Scrum , 3, 16, 32, 33, 38,

44, 51
Scrum Master , 32, 33
Self-organization , 13, 19–20, 32, 33, 39
Self-organizing , 1, 13, 19, 34, 35, 37, 38,

55, 57
SLOC. See Software Lines of Code

(SLOC)
Soft people skills , 3, 7, 9, 11, 21, 30, 41,

56, 65
Software engineering , 4–5, 35, 45
Software Lines of Code

(SLOC) , 9, 10, 58, 63
Sprint , 1, 4–6, 12–14, 16–20, 22–23, 27,

29–35, 37, 39–41, 43–47, 50–52,
55–63, 65

Systems engineering , 4–5, 9, 15

U
Unifi ed Modeling Language (UML) ,

5, 43, 47
Use Case , 5, 34, 37

V
Virtual team , 34, 40

